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Abstract 
 

Species distribution models use species occurrence data and environmental variables to estimate 

species-habitat relationships and predict potentially suitable habitat.  This research analyzes the 

usefulness of a maximum entropy model, Maxent, for estimating species occurrences and 

environmental predictor variables for Hydromantes shastae, a rare species of salamander with a 

small geographic extent and limited occurrence records.  Environmental variables included 

elevation, geology, land cover, precipitation, and soils.  Seventy-five percent of the presence data 

was used to train the model and the remaining 25% was used for testing.  Model performance was 

measured by area under the Receiver Operating Characteristics (ROC) curve (AUC).  The AUC 

of 0.879 indicated that the model performed substantially better than a random prediction.  The 

log loss plot indicated that soils contributed most to model fit.  These results indicate Maxent’s 

effectiveness for identifying potentially suitable habitat for H. shastae and predicting potential 

species occurrences.  This model can be used to support species impact analyses and conservation 

efforts.  Further, this model could be enhanced to focus surveys for populations in new areas and 

predict species responses to altered environmental conditions. 



Chapter 1: 
 

Introduction 
 
1.1 Species Distribution Modeling 
 
For rare species with limited distributions, such as the salamander H. shastae, occurrence data 

and knowledge of habitat requirements can be scarce.  Species distribution modeling (SDM) 

provides an alternative method for identifying suitable habitat and predicting potential species 

distribution when thorough species data are not available.  Models that perform well can inform 

species impact studies and conservation efforts.  This study used Maxent, a maximum entropy 

machine learning model (Phillips 2010).  Unlike many other SDMs, Maxent can be run without 

true absence data and with a small sample size and still achieve high predictive accuracy (Phillips 

and Dudik 2008).  The maximum entropy approach can be effective even with incomplete data 

because it uses what is known and avoids assuming anything about what is unknown (Jaynes 

1990).  The species input data to be used in this research are observed occurrences of 

Hydromantes shastae recorded in the California Natural Diversity Database (CNDDB), a 

continually updated inventory of rare plants and animals in California, maintained by the 

California Department of Fish and Game (California Department of Fish and Game 2010).  

CNDDB data is a common biological input for species distribution modeling (Meentemeyer et al. 

2004; Hernandez et al. 2006; Thorne et al. 2006; Williams et al. 2009).  Environmental variables 

included elevation, precipitation, geology, land cover and soils.  This work analyses the 

usefulness of Maxent to predict suitable habitat and potential occurrences of the H. shastae. 

1.2 Description of Species 
 
The Shasta salamander (H. shastae) is endemic to California.  It is found in the headwaters of the 

Shasta Reservoir drainage in Shasta County, California, in an area less than 35 km across its 

greatest dimension (Wake and Papenfuss 2005).  Most of its range is within the Shasta-Trinity 
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National Forest (Hansen and Papenfuss 1994), but surveys in other potential habitat areas have 

not been conducted.  The Shasta salamander has a discontinuous distribution within its range 

(Hansen and Papenfuss 1994).  There are presently 64 known occurrence sites (California 

Department of Fish and Game 2010).   

The primary habitat of the Shasta salamander is defined by limestone rock outcrops and 

the slopes surrounding these outcrops (Olsen and Lewendal 1999).  It is known to occur in the 

Kennett Formation, McCloud Limestone and Hosselkus Limestone, but not the Pit formation 

(Lewendal 1995).  Although one population has been observed on a volcanic rock outcrop 

(Papenfuss and Cross 1980), and it may occur in other non-limestone areas (Lewendal 1995; 

Lindstrand 2000), occurrences in non-limestone habitats have seldom been documented.  The 

species occurs in elevations ranging from 330 to 773 m.  Land cover types include hardwood-

conifer, ponderosa pine, and mixed conifer habitats. 

The Shasta salamander exhibits an entirely terrestrial life cycle (Olsen and Lewendal 

1999).  The species is sensitive to temperature and moisture, and occurs in cool, moist micro-

habitats (Olsen and Lewendal 1999).  As a member of the family Plethodontidae, it is a lungless 

salamander that respires through its thin, moist skin (Olsen and Lewendal 1999).  It has a 

flattened body (Figure 1a), webbed feet (Figure 1b), a short tail, and a long, projectile tongue 

(Gorman and Camp 1953).  It ranges from 7.5 to 11 cm in total length (Gorman and Camp 1953).  

Juvenile members resemble adults (Figure 1c) (Gorman 1956).  Genetic distinctions may be 

present since populations do not appear to migrate between separated outcrops (Hansen and 

Papenfuss 1994). 
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(a)           (b) 
 

     
(c)          (d) 

 
Figure 1: Flattened body (a) and webbed toes (b) assist in climbing sheer and slippery surfaces;        
characteristics include a short tail (c) and juveniles resembling adults (d) (Photos reproduced with 
permission of Gary Nafis and www.californiaherps.com) 
 

The Shasta salamander is most active in the evening during rainy periods in the fall, 

winter and spring, and is typically found at the surface in limestone areas and under limestone 

boulders and logs (Hansen and Papenfuss 1994; Stebbins 1985).  It is known to be an adept 

climber, using its webbed feet and short tail to climb over sheer and slippery rock surfaces 

(Gorman and Camp 1953).  During periods of low surface moisture, the Shasta salamander 

retreats to subsurface cave refuges of rocks, downed wood, vegetative litter, and substrata 

(Gorman 1956; Keen 1982; Lindstrand 2000). 

The 1949 filling of Shasta Lake submerged some of the Shasta salamander’s historical 

range, and current human activities including recreation, mining, logging, and water management 

activities around Shasta Lake continue to impact its habitat (Hansen and Papenfuss 1994).  In 

1979, the United States Forest Service initiated a special management plan for the Shasta 

salamander designed to both prevent habitat disturbances and re-vegetate habitat to promote 
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lower temperatures (Papenfuss and Brouha 1979).  In addition, a 300 foot (91 m) habitat 

protection buffer zone was proposed (Hansen and Papenfuss 1994).  In 1999, an investigation was 

implemented by the United States Department of the Interior, Bureau of Reclamation to study the 

potential impacts of raising Shasta Dam (United States Department of the Interior, Bureau of 

Reclamation 1999), which would flood salamander habitat and thereby threaten the genetic 

diversity and overall survival of the species (Hansen and Papenfuss 1994). 

Current conservation status listings for the Shasta salamander include “threatened” by the 

California Department of Fish and Game, “category 2” candidate for listing as an endangered 

species by the United States Fish and Wildlife Service, “sensitive” by the United States Bureau of 

Land Management and the United States Forest Service, “critically impaired” by Natureserve 

Global Conservation Status Ranks, and “vulnerable” by the World Conservation Union 

(California Department of Fish and Game 2009). 

1.3 Description of Study Area 
 
The study area encompasses the known Shasta salamander habitat range in Shasta County, 

California (Figure 1) (Lindstrand 2000).  It measures 2,320 km2 (573,239 acres), with elevation 

ranging from 153 to 1711 m and average annual precipitation values ranging from 125 to 250 cm.  

The major hydrologic feature within the study area is Shasta Lake, the largest freshwater 

reservoir in the state of California, covering 121 km2 (30,000 acres).  The United States 

Geological Survey Gap Analysis database suggests that approximately 84% of the study area is 

covered with forest and woodland systems, with 6% shrubland, steppe and savanna systems, 5% 

aquatic, 2% riparian and wetland, 1% each recently disturbed or modified, human land use, and 

sparse and barren, and less than 1% grassland systems (United States Geological Survey 2010b).  

Primary geologic bedrock includes lava flows, tuff beds, volcanic rocks and limestone outcrops, 

including four limestone belts: the Kennett Formation, McCloud Limestone, Hosselkus, and Pit 

formations (Lewendal 1995).  Jepson bioregions in the study area include the Klamath Ranges, 
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High Cascade Range, Cascade Range Foothills, Modoc Plateau, and North Coast Ranges (Jepson 

and Hickman 1993). 

              
  
 Figure 2: Location of study area 
 
Ownership of the study area is approximately 60% United States Forest Service, 38% private 

land, and 2% United States Department of the Interior Bureau of Land Management and 

California State-owned lands.  Human activities in the study area include mining, logging, water 

resource management (including damming, storage, power generation, provisioning, and 

recreation), and outdoor recreation. 
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Chapter 2: 
 

Literature Review 
 

2.1 Species Distribution Models 
 
Species distribution models are used for examining and predicting the natural distribution of 

species.  They use data to describe empirical correlations between biological data of species 

occurrence and the environmental variables that define the species’ physical environment 

(Pearson 2007).  Resulting predictions identify the species niche and suitable habitat to support 

the species.  These data are useful for environmental research, resource management, and 

conservation efforts. 

 Species distribution models use a variety of approaches.  Statistical models include 

generalized linear models (GLMs), generalized additive models (GAMs), boosted regression trees 

(BRT), and multivariate adaptive regression splines (MARS).  Machine learning techniques 

include artificial neural network (ANN; Pearson et al. 2002), genetic algorithm (GA; Stockwell 

and Peters 1999), ecological niche factor analysis (ENFA; Hirzel et al. 2002), and maximum 

entropy (Maxent; Phillips et al. 2006) models.  There are also heuristic models, such as 

BIOCLIM, which model sequential BIOsphere systems under CLIMate change (Beaumont and 

Hughes 2002) and combinatorial optimization methods such as the genetic algorithm for rule-set 

production (GARP; Fitzpatrick et al. 2007).  

2.2 Correlative and Mechanistic Modeling Approaches 

Two distinct modeling approaches, correlative and mechanistic, are used to make species 

distribution predictions (Pearson 2007).  Correlative SDMs use two types of input data: biological 

data, which is the observed or sampled data that characterize the known species distribution, and 

environmental data that represents environmental factors that characterize the species’ physical 
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environment.  Mechanistic SDMs do not use observed biological distribution sample data but 

instead predict distribution based on species physiological and environmental limitations. 

 The types of available input data will determine whether a correlative or a mechanistic 

SDM should be used.  A correlative method can be used when species occurrence data are 

available.  To produce reliable results, a correlative method should only be used when at least the 

minimum number of reliable occurrence records necessary for the model to perform accurately 

(as identified by the literature) is available (Elith and Leathwick 2009; Stockwell and Peterson 

2002; Wisz et al. 2008).  A mechanistic approach can be utilized when no species occurrence data 

is available, or when the sample size is too small to provide accurate results in a correlative 

model.  Mechanistic models require an increased knowledge of the species’ biology as well as 

eco-physiological requirements (Robertson et al. 2003).  Mechanistic models may be more 

appropriate than correlative methods at finer spatial scales (Guisan and Zimmermann 2000; 

Helmuth et al. 2005; Richardson et al. 2004).  A mechanistic approach should be used only when 

the knowledge of species can be relied upon to determine the environmental predictors that 

influence the species distribution. Because the mechanistic approach uses few or no known 

observations, they may be more difficult to validate than the correlative methods (Pearson 2007).   

2.3 Presence/Absence or Presence-Only Data 

All correlative models use species presence data (which defines where the species has been 

observed) as the primary biological input.  However, some correlative models also require species 

absence data (which defines where the species has been observed to be absent).  Common models 

that require absence data include the GLM, GAM, BRT, MARS, GA, and ANN methods.  While 

Brotons et al. (2004) showed that absence data may improve model performance, absence records 

are often times unavailable or include false absences, making them unreliable (Pearson 2007).  

When absence data are not available, models that require absence data can use sampled pseudo-
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absence data which can be randomly selected or generated using weighted criteria (Engler et al. 

2004). 

2.4 Model Selection Factors 

Typical factors considered when selecting the best fitting species distribution model include data 

characteristics, data relevance/predictor selection, and linear vs. curvilinear responses. 

2.4.1 Data Quality 

Data used for model inputs must be accurate in order for model results to be accurate (Johnson 

and Gillingham 2005).  In an SDM comparison study, data error and bias were found to be the 

primary contributors to inaccurate model results (Wisz et al. 2008).  Data error can come from 

many sources which might include inaccuracy and imprecision in data capture methods.  Data 

bias might come from collection efforts conducted in areas that are more easily accessible and 

therefore not a true sample.  Biased results might come from data that was collected for a specific 

purpose other than to be used as SDM input (Austin 2007; Elith and Leathwick 2009).  For 

example, if the observed species data set is acquired from a museum, it may well have been 

collected with the goals of preserving unusual or rare species, which would prompt different 

collection methods and acquired data than would a collection effort focused on collecting species 

data for a distribution study.  One way to address this bias is to supplement the existing data with 

new survey data (Austin 2007) or compare data from different sources to examine the accuracy of 

species’ range representations (Hernandez et al. 2006). 

2.4.2 Sample Size 

Sample size of required data is an important factor influencing model results. Since the amount of 

observed data available to be used for model input affects the results, sample size must be 

considered in the model selection process.  Research has demonstrated significant impact of the 

biological data sample size on model performance (Elith and Leathwick 2009; Johnson and 
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Gillingham 2008; Pearson 2007; Robertson et al. 2003; Stockwell and Peterson 2002; Wisz et al. 

2008; Zuo et al. 2008).  In certain instances, model accuracy is improved with increases in 

environmental data (Zuo et al. 2008) and reduced with decreases in sample size (Elith and 

Leathwick 2009).  Results of a study comparing 12 different species distribution models (at 

sample sizes of 10, 30, and 100) showed that increasing sample size leads to increases in model 

performance and decreases in the variability of predictive accuracy (Wisz et al. 2008).  Because 

none of the models tested predicted well with sample sizes less than 30, the researchers concluded 

that small sample sizes should be used for exploratory purposes only. 

 Wisz et al. (2008) concluded that methods that performed best with large sample sizes, 

like GBM, MARS-INT and BRUTO, did not perform well with smaller sample sizes; Maxent, a 

maximum entropy model often cited as being an accurate predictor of species distribution, 

performed well with both small and large sample sizes; and DOMAIN (a distance metric 

algorithm) and OM-GARP (a genetic algorithm) performed among the best with small sample 

sizes, but only moderately with larger sample sizes. 

Stockwell and Peterson (2002) compared three models for effects of sample size on 

model performance.  Results showed that a machine learning method, genetic algorithm for rule-

set production (GARP), and a coarse surrogate method (CSM) had accuracy rates within 90% of 

the maximum obtained with 10 sample points and achieved near maximal accuracy with 50 

sample points, while a fine surrogate method (FSM) and a logistic regression (LR) model 

required 100 data points to achieve near maximal accuracy (Stockwell and Peterson 2002).  

Hernandez et al. (2006) found the machine learning Maxent model more capable than three other 

modeling methods (Domain, GARP, and Bioclim) for producing accurate results with sample 

sizes ranging from 5 to 25 occurrences.  LR has markedly low accuracy with small data sets 

(Elith and Leathwick 2009; Stockwell and Peterson 2002; Wisz et al. 2008). 
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2.4.3 Data Type 

The input data available will influence the modeling methods considered for a particular research 

effort.  Some models require both data on where the species has been recorded as present as well 

as where the species has been recorded to be absent.  These include GLMs, GAMs, and ANNs.  

When absence data is not available, a presence-only model will be required.  These include 

BIOCLIM, DOMAIN, Maxent, and ENFA (Pearson 2007). 

 While multiple data types can be used as biological model inputs, raster grids of 

continuous data are most effective for environmental variables; discrete environmental data, like 

soil type or land cover, are not functional with many SDMs (Pearson 2007).  Representing 

environmental data as a continuous surface ensures that every cell containing biological data will 

contain environmental data as well (Pearson 2007).  The resulting cells containing both biological 

and environmental data are then used by the model to predict the missing biological data. 

 The need to discern the degrees of influence of predictor variables on model results will 

also influence model selection.  Regression models, like geographically weighted regression 

(GWR), GAMs and GLMs, provide output that includes the relative influence of input variables 

(Guisan et al. 2002).  However, “black box” models, like ANNs, do not provide such details of 

their functioning and so may not be suitable if relative variable influence is important (O’Sullivan 

and Unwin 2003). 

The desired form of output data will also influence model selection.  Output options 

might include a continuous prediction where probability values range from 0 to 1, or a binary 

prediction where, for example, 1 represents species presence and 0 represents absence.  If a model 

produces continuous data, a threshold value can be used to apply binary classifications (Guisan et 

al. 2002). 
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2.4.4 Data Scale 

To appropriately serve research goals, the spatial scale, including both the extent and the 

resolution, should be selected based on several influencing criteria: the phenomenon being 

modeled (Austin 2007; Elith and Leathwick 2009; Johnson and Gillingham 2005; Pearson 2007), 

the data, and the intended use of the results (Elith and Leathwick 2009).  The extent is associated 

with the purpose of the analysis, for example, whether the study extent is global, or instead covers 

a smaller region.  The resolution is more often than not a function of the data properties, spatial 

accuracy, and the precision of the biological data (Elith and Leathwick 2009).  Correlative models 

are more appropriate for global or regional analysis while mechanistic approaches might be more 

appropriate for finer resolution output (Guisan and Zimmermann 2000; Helmuth et al. 2005; 

Richardson et al. 2004).   

2.4.5 Data Relevance/Predictor Selection 

Model data input requirements vary, determined by both the model being used and the ecology of 

the species under study.  For the biological data, which represents the observed locations of a 

species, some models need presence-only data, while others require both presence and absence 

data. 

Selecting the appropriate environmental variables which will serve as the predictors 

requires knowledge of the meaningful relationships between the biological and environmental 

data.  Elith and Leathwick (2009) stressed that environmental variables must be ecologically 

relevant to the species under study in order to produce a well-fitted model.  In addition to the goal 

of the study and data quality, model results are influenced by the biology of the organism and 

knowledge about the organism (Johnson and Gillingham 2005; Robertson et al. 2003).  Mixed 

models might be utilized in certain circumstances.  For example, species that have mobility (like 

birds and fish) require different modeling approaches than sessile ones because models with a 
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mobile component must include movement descriptors (Elith and Leathwick 2009).  Temporal 

predictors are necessary for incorporating seasonal variation (Elith and Leathwick 2009).  Elith 

and Leathwick (2009) conclude that prediction accuracy depends more on species characteristics 

than modeling technique differences. 

There are many techniques to select predictors.  The most appropriate methods will 

depend on the specifics of the study (Johnson and Gillingham 2005).  For model results to predict 

species distributions accurately, the environmental influences on the species must be understood 

and represented in the data in a relevant and appropriate manner.  To ensure relevance, the focus 

should be on environmental processes, both ecological and biophysical, that influence the species, 

data availability, and model purpose (Austin 2007).  Error in predictor data can have a significant 

impact on results and for this reason Austin (2007) suggested using direct variables (for example 

sunlight) because they bring less potential for error than using indirect variables (for example 

slope and aspect) that have been derived from direct sources. 

Methods for incorporating relevant biologic-environmental interactions include 

combining regression trees with other approaches, ridge regression, and stepwise selection.  

Methods to apply variable weighting of predictors include using regression, convex, or alpha 

hulls (Elith and Leathwick 2009).  Envelope methods may be used to construct and apply 

predictors with equal weights. 

2.4.6 Linear and Curvilinear Responses 

Austin (2007) explained that while regression methods are commonly used to model species 

distributions, the curvilinear responses that are common in relationships between species and 

their environments are not well modeled in several regression methods.  For example, structural 

equation modeling (SEM), described as strong for testing causality, and geographically weighted 

regression (GWR), which is good at examining spatial non-stationarity of ecological processes 

and taking into account spatial autocorrelation and factors that vary in space, are not adept at 
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addressing curvilinear relationships and interactions (Austin 2007).  In an SDM comparative 

study by Lippit et al. (2008), logistic regression parametric assumptions prevented the model 

from accurately characterizing the non-linear biological and environmental relationships.  In 

SDM comparative studies by Austin (2007) and Wisz et al. (2008), Maxent is cited as being 

strong at predicting curvilinear species distributions. 

2.5 Model Performance Measures 

There are many different approaches for validating a model’s performance.  The AUC, Kappa 

coefficient, and correlation coefficients are commonly used to measure predictive performance 

(Elith and Leathwick 2009).  The AUC is a single value that assesses model accuracy.  For 

species distribution models, it measures the distinction between sites where species presence is 

likely against sites where species presence is unlikely.  Swets (1988) classification or AUC can be 

used for interpretation and describes the possible values of AUC as follows: 0.09 to 1.00 is 

excellent, 0.80 to 0.90 is good, 0.70 to 0.80 is fair, 0.60 to 0.70 is poor, and < 0.60 is failing. 

 The Kappa coefficient shows the level of agreement between the observed and predicted 

data.  A higher K value suggests better agreement between the observed and predicted values.  It 

is possible for the Kappa coefficient to overestimate model performance (Robertson et al. 2003).  

AUC is positively related to the model’s performance (Pearson 2007; Zuo et al. 2008).  It is a 

common and desirable method for assessing model success (Austin 2002) and applicable to any 

species distribution model (Phillips and Dudik 2008). 

Binary predictions can be validated with an error matrix.  The results of the error matrix 

can then be statistically tested with, for example, the Kappa coefficient, binomial, or chi-squared 

tests.  The choice of validation tests will depend on the data used and the purpose of the model. 

Some software packages include test statistic tools (e.g. ArcGIS and DIVA-GIS).  Continuous 

predictions that are not converted to binary output can be assessed via threshold-independent 

assessment (Pearson 2007). 
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 Spatial autocorrelation, the likelihood that nearby objects will be more similar to each 

other than those related at a further distance apart can cause a model to be overfit (O’Sullivan and 

Unwin 2003).  In species distribution studies, spatial autocorrelation can result from correlated 

environmental variables, local and region sub-species populations that have variable ecologies, 

absolute density-independent dispersal, and potential population growth rates (Bahn et al. 2008).  

Moran’s I and Geary’s C are two methods available to measure spatial autocorrelation 

(O’Sullivan and Unwin 2003).  
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Chapter 3: 
 

Data and Methods 
 
3.1 Biological Data 
 
The biological input data used in this research was a dataset of occurrences of Hydromantes 

shastae from the CNDDB (Table 1).  CNDDB data have been used as a primary source for 

biological input data by other researchers modeling species distributions (Hernandez et al. 2006; 

Meentemeyer et al. 2004; Thorne et al. 2006; Williams et al. 2009).  The data were acquired via 

the California Department of Fish and Game Biogeographic Data Branch online download portal 

in July 2010 (California Department of Fish and Game 2010).  The original format of the 

downloaded data was an Environmental Systems Research Institute (Esri) polygon shapefile.  The 

polygon dataset was chosen over the also available point dataset because, according to the 

California Department of Fish and Game Biogeographic Data Branch, the polygon dataset 

contains the accuracy necessary for spatial analysis, while the point dataset is provided for 

visualization purposes only (California Department of Fish and Game 2007).  To prepare the data 

for the model, all of the 62 H. shastae occurrence records were extracted from the CNDDB 

population occurrence polygon layer and clipped with the study area boundary using Esri 

ArcMap.  Esri ArcToolbox was used to generate centroids from the polygons to produce an 

approximate point shapefile representing known H. shastae population occurrences.  ArcMap was 

used to add and calculate longitude and latitude values in decimal degrees for each of the 62 

occurrence records.  To meet the input requirements of Maxent, the database table associated with 

the species occurrence point shapefile was converted to a comma-separated values (.csv) file 

using Microsoft Excel.  Only the species name, longitude, and latitude columns were retained.  

This .csv file was the only biological data file used in Maxent.  No additional occurrence data was 

used for model training (Section 3.3). 
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Table 1: Types and sources of biological and environmental data used in Maxent 
modeling of Hydromantes shastae distribution in Shasta County, CA 
   
Type of Data   Source 
   
Species Distribution   
Current occurrence 
data for state and 
federally listed, rare 
and sensitive species in 
the United States 

 California Natural Diversity Database: 
http://www.dfg.ca.gov/biogeodata/cnddb/  (subscription 
required) 

Topography   
Elevation at 1/3 arc-
second (approximately 
10 m) resolution 

 National Elevation Dataset (NED):                           
http://seamless.usgs.gov 

Geology   
California state 
geologic units 
characterized by rock 
type  

United States Geological Survey:  
http://tin.er.usgs.gov/geology/state/state.php?state=CA 

Land Cover   
Dataset describing 
vegetation and land 
use in the United 
States 

 

United States Geological Survey Biological Informatics 
Office National Biological Information Infrastructure (NBII) 
Gap Analysis Program (GAP) : 
http://lc.gapanalysisprogram.com/landcoverviewer/Map.aspx

Precipitation   
Annual average 
precipitation 

 United States Department of Agriculture (USDA) Natural 
Resources Conservation Service: 
http://datagateway.nrcs.usda.gov/GDGOrder.aspx 

Soils   
United States soil 
types by region 

 USDA Natural Resources Conservation Service Soil Data 
Mart Soil Survey Geographic (SSURGO) Database: 
http://soildatamart.nrcs.usda.gov/ 

 
3.2 Environmental Variables 
 
Environmental predictor variables were chosen based on the scientific literature describing 

Hydromantes shastae dependencies on the environment (Section 2).  These variables were 

elevation, geology, land cover, precipitation, and soils (Table 1).  Each predictor variable dataset 

required manipulation to prepare it for Maxent use.  All of the variables were converted to Esri 

grid format and assigned values for 10 by 10 m grid cells using Esri’s ArcGIS Desktop Spatial 
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Analyst Extension.  Because attribute tables are not retained in grids, ArcMap was used prior to 

the grid conversions to add “value” fields containing the attribute data that would be used in 

Maxent to evaluate model fit and later to be used for joining grid layers to attribute data.  

ArcToolbox was used to convert the grids to the American Standard Code for Information 

Interchange (ASCII) format.  ArcToolbox tool was then used to assign each variable the standard 

spatial reference chosen for this research: Universal Transverse Mercator, North American Datum 

1983, Zone 10N, meters. 

Elevation data used was acquired from the 1/3 arc-second National Elevation Dataset 

(NED), a product of the United States Geological Survey (USGS) (2010a).  The 1/3 arc-second 

resolution approximates to the 10 m by 10 m cell size to which all the predictor variables where 

converted for Maxent input.  The USGS (2010a) has reported that the NED dataset is the best 

coterminous United States elevation data available, with updates occurring approximately every 

two months.  The data acquired for this research was obtained via download in July 2010.  The 

data set was clipped to the study area boundary.  Within the study area, the dataset contained 

elevation values ranging from 153 to 1711 m. 

The geologic environmental predictor data used contained primary and secondary 

predominant rock type characterizations for the state of California.  The data were acquired from 

the USGS online and was downloaded as a shapefile in May 2010 (United States Geological 

Survey 2005).  The shapefile was clipped to the study area boundary.  The field that contained the 

predominant rock types characterizing each area was generalized from 15 to three classifications: 

volcanic, limestone, and neither (Table 2).  These classifications were based on the primary rock 

types described in the literature (Section 2) as predominant in H. shastae habitat.  The 

generalization was performed because of Phillips (2005) direction that while Maxent can accept 

categorical data as input, the categories should be few in number. 
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Table 2: Descriptions of geology classes 
  

Class 
code 

Description 

1 Volcanic 
2 Limestone 
3 Neither 

 

Land cover data was acquired from the USGS Biological Informatics Office, National 

Biological Information Infrastructure (NBII) Gap Analysis Program (GAP) (United States 

Geological Survey 2010b).  The downloaded shapefile contained three levels of detail.  Level 1 

contained nine classes generalized to the level of vegetative structure, as well as three 

undesignated records.  Level 1 data was cleaned of unclassified records and reclassified with 

Spatial Analyst to the eight classes existing in the study area (Table 3).  Level 2 contained 43 

classes and incorporated elevation and climate data.  Since elevation and climate data were 

included in the H. shastae model by other datasets, Level 2 was not utilized to avoid overfitting 

the model, which can degrade predictive performance (Hastie et al. 2001; Phillips and Dudik 

2008).  Level 3 contained 590 classifications, which are too many for this model, based on 

Phillips (2005).   

Table 3: Descriptions of land cover classes 
Class 
code 

Description 

1 Human land use 
2 Aquatic 
3 Sparse and barren systems 
4 Forest and woodland systems 
5 Shrubland, steppe, and savanna systems 
6 Grassland systems 
7 Recently disturbed or modified 
8 Riparian and wetland systems 
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 The precipitation data used consisted of annual average precipitation in inches as 

calculated from 1971 through 2000.  This variable was obtained from the USDA NRCS Geo 

Spatial Data Gateway (Oregon State University and the Oregon Climate Service 

at Oregon State University 2010).  The dataset, once clipped to the study area boundary, 

contained precipitation values ranging from 42 to 94 inches, or about 125 to 250 cm. 

Spatial and tabular soil type data were acquired from the United States Department of 

Agriculture (USDA) Natural Resources Conservation Service (NRCS) Soil Data Mart (United 

States Department of Agriculture 2008a-c).  To cover the study area, three shapefiles were 

combined using ArcMap and clipped to the boundary.  Editing was then performed to merge 

remnant coincident boundaries between areas from different source shapefiles with the same soil 

types.  The field describing soil type contained values from two different map unit schemas; these 

were edited and made uniform by using map unit/soil type definitions present in the tabular data 

files that accompanied the spatial data. 

3.3 Species Distribution Model 
 
Figure 3 provides a conceptual summary of the modeling method.  The Maxent model allowed 

for species distribution predictions to be made with one presence-only biological dataset.  In 

addition to not requiring a species absence dataset, Maxent did not require two separate datasets 

for model training and testing purposes.  Maxent separated a single species occurrence file into 

two subsets, one for training and one for testing.  The sample size used included all of the 62 

CNDDB H. shastae population occurrence records.  The user designated Maxent to divide the 62 

biological presence records into 47 (75% of the total of 62) for training and 15 (25% of the total 

of 62) for testing. 
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Figure 3: Conceptual summary of modeling method 

 

The five environmental predictor variables (previously prepared for model input with 

conforming cell size, geographic extent, projection, and ASCII file type) were added to Maxent in 

a single file.  Maxent can accept both continuous and categorical environmental variables 

(Phillips and Dudik 2008).  Within the model settings interface, elevation and precipitation were 

identified as continuous and geology, land cover, and soils as categorical. 

Maxent matched the species occurrence data to the environmental variables using 

regularization parameters and applied constraints (Table 4); these kept the data from matching too 

closely, called overfitting, which could degrade predictive performance (Hastie et al. 2001; 

Phillips and Dudik 2008).  Maxent fit the regularization coefficient empirically based on the 

sample size, a method that was deemed quite effective by Phillips et al. (2006).  According to 

Soils

Data Acquisition 

Biological Data Environmental Predictor Variables
Species Occurrence 

Records 
Elevation Land

(Presence Only) Geology Precipitation 

Data Preparation 
Training Test 

Data ClassificationCell Extent Data Size 
Conversion

Modeling  
Maxent 

Model 
Evaluation 

AUC 
 

Prediction Map 

20 
  



Maxent’s automatic regularization guidelines, the sample size of 62 will be calculated using a 

coefficient interpolated between 0.25 and 0.05, with 0.25 being the coefficient for 30 samples and 

0.05 the coefficient for 100+ samples (Anderson et al. 2003).  The regularization default settings 

were examined and accepted by the user, in part due to Phillips and Dudik (2008) which 

concluded Maxent defaults to be appropriate and produce results almost equivalent to models that 

incorporate true absence data.  For each grid cell in the study area, the model used the 

regularization parameters to calculate values for the five predictor variables. It then used the 

training data to identify and rank the pixels, with higher values assigned to pixels most similar to 

those coincident with the training data.  In order to produce binary results that could be 

interpreted as “suitable” and “unsuitable” habitat, a minimum training presence threshold was set, 

the same threshold rule used, with effective results, by Phillips et al. (2006). 

Table 4: Regularization parameters and applied constraints 
   
Number of Training Samples  47 
Number of Test Samples  15 
Random test percentage  25 
Regularization multiplier  1 
Max number of background points  10000 
Replicates  1 
Maximum iterations  500 
Output format  Logistic 
Convergence threshold  0.00001 
Apply threshold rule  Minimum training presence 

 
3.4 Model Performance Measures 
 
The predictive performance of Maxent for modeling H. shastae occurrences was measured using 

AUC.  The AUC method has been shown to be an accurate measure of the Maxent model’s 

overall performance (Elith and Leathwick 2009; Hernandez et al. 2006; Johnson and Gillingham 

2005; Pearson 2007; Phillips and Dudik, 2008; Zuo et al. 2008).  With a presence only model, 

AUC represents site ranking quality, the probability that a presence prediction is ranked above a 
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non-presence site.  Rankings above 0.5 are considered better than random.  Elith (2002) 

considered rankings of 0.75 as achieving potential usefulness.  Swets (1988) AUC classification 

was used to assess the results of this study (Table 5).  In order to assess the significance of each 

environmental predictor variable to the model, Maxent was set to perform a jackknife test.  When 

run, the model sequentially eliminated environmental variables in order to calculate the gain 

contribution of each.  It also ran each variable individually, thus identifying the one which 

contributed the highest gain. 

Table 5: AUC classification 
0.09 to 1.00   excellent 
0.80 to 0.90   good 
0.70 to 080   fair 
0.60 to 0.70   poor 

<0.6   fail 
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Chapter 4: 
 

Results 
 
4.1 Species Distribution Map 
 
The Maxent model produced a species distribution map, AUC values representing model 

performance and response curves and a percentage table showing how each environmental 

predictor variable contributed to the Maxent prediction.  The H. shastae species distribution map 

produced by the model illustrates where the species is predicted to occur (Figure 4).   

 

Figure 4: Maxent representation of predicted Hydromantes shastae distribution.  Red and orange 
colors represent more accurate predictions and blues represent lower probability of occupancy.  
Dots represent training (white) and testing (purple) data 
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Figure 5 shows the same data with the inclusion of the study area boundary and a different color 

palette.  Figure 6 shows an illustration of the model’s prediction of suitable and unsuitable 

habitat.  All of the test points occupy areas that the model predicted as suitable habitat. 

 
 
Figure 5: Maxent representation of predicted Hydromantes shastae distribution with study area 
boundary and an alternative palette for the habitat suitability values 
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Figure 6: Binary model results from threshold, representing suitable and unsuitable habitat.  All 
of the test samples fall within suitable habitat areas 
 
4.2. Model Performance 
 
Figure 7 shows the plot of sensitivity against specificity at different threshold values.  This 

method identifies the optimum threshold where the sum of specificity and sensitivity are 

maximized.  Liu et al. (2005) regarded AUC as one of the best methods for threshold 
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determination.  The AUC for the test data was 0.879.  According to Swets (1988) AUC 

classification, this ranks the model as “good” (Table 5). 

 
 
Figure 7: AUC curve for the model indicating model performance 
 
4.3 Response Curves 
 
Maxent’s response curves showed how the model’s predictions changed as the environmental 

variables varied (Figure 8 a-e).  The probability of species presence declined as elevation values 

increased, with predictions of presence no better than random over about 304 m (100 ft).  

Geology types showed a relationship with species presence for volcanic and limestone types 

(Table 2).  Aquatic and grassland land cover types (Table 3) showed a stronger than random 

correlation with species presence.  The precipitation response curve showed a better than random 

relationship with species presence for annual average precipitation values less than about 182 cm 

(72 in).  Some soil types were strongly correlated with species presence with a majority well 

below random. 
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Response of Hydromantes shastae to elevation 

(a) 

 

Response of Hydromantes shastae to geology 

(b) 

Figure 8: Maxent response curves for the five predictor variables: (a) elevation, (b) geology, (c) 
land cover, (d) precipitation, and (e) soils 
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Figure 8: Continued 

 

Response of Hydromantes shastae to land cover 

(c) 

 

Response of Hydromantes shastae to precipitation 

(d) 
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Figure 8: Continued 

 

 

Response of Hydromantes shastae to soils 

(e) 

 
4.4 Predictor Variable Importance 
 
The jackknife test showed that soil type was the most important variable in determining model 

prediction, in the training, test, and AUC evaluations (Figure 9 a-c).  Soil type increased the gain 

more than any other variable when added to the jackknife test and decreased the gain the most 

when omitted.  An estimate of the contribution of each predictor variable to the model showed 

that after soils, at 55.4%, elevation (19.3%) and precipitation (19%) contributed most to the 

model (Table 6).  Geology (3.5%) and land cover (2.8%) contributed relatively little. 
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(a) 

 

 

(b) 

 

 

(c) 

Figure 9: Jackknife results for (a) training gain, (b) test gain, and (c) AUC 
 
Table 6: Variable contribution 

Variable     Contribution (%) 
soils     55.4 

elevation     19.3 
precipitation     19 

geology     3.5 
land cover     2.8 
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Chapter 5: 
 

Discussion and Conclusions 

5.1 Model Strengths 

Stockwell and Peterson (2002) identified that machine learning methods, like Maxent, have been 

shown to perform at 90% of maximum accuracy rate with only 50 sample points, and more 

accurately than other modeling methods with as few as 5 to 25 sample points (Hernandez et al. 

2006).  For this research, the model was set to divide the total available occurrence points into 

75% for training the model and 25% testing points.  Thus, the Maxent model might be expected 

to perform with at least an accuracy rate of 90% of the maximum with 15 sample points.  In fact, 

the habitat suitability map placed all test samples in areas deemed “suitable” by the model.  The 

model produced this result consistently for each of five iterations.  This suggests that the model’s 

evaluation of “suitable” and “unsuitable” habitat, created using the training samples, was 

accurate, at least for the 15 test samples employed.  The AUC value of 0.879 suggests that the 

model fit is good, far closer to a perfect fit than a random one (Swets 1988).  The soils predictor 

variable, identified as contributing most to the model, contained a large proportion of limestone 

soils.  This agrees with the literature describing the predominance of limestone soils in 

Hydromantes shastae habitat (Section 2). 

5.2 Model Challenges 

Although the geology variable classifications of limestone and volcanic rock types showed strong 

correlations with species presence in the response curve, the variable’s percentage of contribution 

to the model was evaluated at only 3.5%.  This might be because while the occurrence data used 

as model input were collected during the seasons of fall, winter, and spring, when the species is 

active on the surface, the description of the species geologic range in the literature may include 

additionally its inactive occurrence locations, which are subterranean fissures and caves in 
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limestone and volcanic geologic regions.  Also, while the elevation variable ranked at 19.3% 

importance to the model, its response curve showed species presence no better than random over 

304 m (100 ft), which is in stark contrast to the literature reports of species occurrence ranging 

from 330m (1100 ft) to 773m (2550 ft) (Section 2).  In addition, while land cover was found to be 

the least important variable to the model, the Maxent response curve showed a high potential for 

species presence in the grassland systems land cover type, a correlation not supported by 

literature accounts of the species’ habitat.  In terms of precipitation, Maxent’s evaluation of 

annual average precipitation importance to the model (19%) may reflect the amphibious species 

moisture requirements as described in the literature (Section 2). 

  There are certainly sources of error and bias contained in all species distribution models 

(Section 2).  In this model, there are specific factors that must be considered when interpreting H. 

shastae habitat suitability predictions.  Some come from the modeling method itself.  For 

example, the arbitrary data partitioning method used may have influenced model results (Fielding 

and Bell 1997).  Splitting one set of occurrence data into one training set and one testing set gave 

different results than would have collecting two sets of independent data (Chatfield 1995).  Test 

and training data contained the same spatial autocorrelation, contributing the same error in the 

results of both.  Also, the arbitrarily held out testing sample may not have produced the ‘best’ 

model (Fielding and Bell 1997).  The selection of predictor variables may not have produced the 

‘best’ model and without real absence data, Maxent estimated absences utilizing the background 

matrix, which might have skewed the results, particularly with a small sample size of 15, if a 

pseudo-absence was assigned in error, either to a point where there was an occurrence, or where 

there was suitable habitat. 

 In addition to the modeling method, factors of species ecology and the data used must be 

considered during interpretation and exploration into possible explanations for this model’s non-

conformity to the literature.  The CNDDB dataset used may not have well informed the model of 
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actual species occurrence.  The dataset was influenced by the species’ patchy distribution, its 

rarity throughout the landscape, its seasonal surface occurrence, and its location (when active) on 

steep and rocky (often impassable) terrain.  Literature explains that this species has a dynamic 

range in response to climatic and other changes (Parmesan 2006).  Because CNDDB data is based 

on biological surveys conducted primarily in areas identified based on historic species 

assumptions and CNDDB data sources are from project-driven discoveries that occur in focused 

geographic areas, areas not surveyed may hold significant predictive information that was left out 

of this model.  Key environmental parameters may be missing and those used may be 

misclassified.  In addition, the model may have erroneously calculated an area as suitable that 

really is unsuitable because of geographic barriers that limit dispersal, or competition from other 

species (Pearson 2007). 

5.3 Model Viability for Hydromantes shastae 

Chatfield (1995) suggested that models can be accurate and useful regardless of their statistical 

validity.  The value of this model should, at least in part, be determined by how the model will be 

applied.  Minimally, the model identified areas for more focused study and survey.  This Maxent 

model produced an accurate occurrence prediction.  With additional model validation, like field 

validation, the model could support the delineation of suitable habitat.  The model indicated the 

soils variable as the most important variable for making H. shastae habitat suitability predictions 

using Maxent.  This agrees with expert understanding of the species that describes limestone soils 

and rocks (geology) as ecologically important for the species.  While the model demonstrated its 

suitability to predict Hydromantes shastae occurrences utilizing presence-only data, its evaluation 

of environmental predictor variable importance is less satisfactory.  Species impact studies and 

conservation efforts could use this model to inform their research and as a basis for further 

investigation. 
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5.4 Future Uses of Research 

To extend the usefulness of this research, multiple model runs could be done to produce 

variations in predictions (see Amaral 2007), allowing for more conclusive results.  In addition, 

Maxent and/or other modeling methods could be used to apply this model to making new 

population discoveries in new areas and under altered environmental conditions.  Alternatively, 

other species distribution modeling methods could be used with these same datasets to generate 

superior results (Pearson et al. 2006; Phillips and Dudik 2008; Randin et al. 2006) or to extend 

the accuracy and value of the research reported herein.  The results of this research project do 

confirm the viability of modeling rare and endangered species and the potential for using these 

kinds of analyses to support biological conservation and restoration. 
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