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ABSTRACT 

As carbon based fossil fuels become increasingly scarce, renewable energy 

sources are coming to the forefront of policy discussions around the globe. As a result, 

the State of Hawaii has implemented aggressive goals to achieve energy independence by 

2030. Renewable electricity generation using solar photovoltaic technologies plays an 

important role in these efforts. This study utilizes geographic information systems (GIS) 

and Light Detection and Ranging (LiDAR) data with statistical analysis to identify how 

much solar photovoltaic potential exists for residential rooftops in the town of Kailua 

Kona on Hawaii Island. This study helps to quantify the magnitude of possible solar 

photovoltaic (PV) potential for Solar World SW260 monocrystalline panels on residential 

rooftops within the study area. 

Three main areas were addressed in the execution of this research: (1) modeling 

solar radiation, (2) estimating available rooftop area, and (3) calculating PV potential 

from incoming solar radiation. High resolution LiDAR data and Esri’s solar modeling 

tools and were utilized to calculate incoming solar radiation on a sample set of digitized 

rooftops. Photovoltaic potential for the sample set was then calculated with the equations 

developed by Suri et al. (2005). Sample set rooftops were analyzed using a statistical 

model to identify the correlation between rooftop area and lot size. Least squares multiple 

linear regression analysis was performed to identify the influence of slope, elevation, 

rooftop area, and lot size on the modeled PV potential values. The equations built from 

these statistical analyses of the sample set were applied to the entire study region to 

calculate total rooftop area and PV potential.  
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The total study area statistical analysis findings estimate photovoltaic electric 

energy generation potential for rooftops is approximately 190,000,000 kWh annually. 

This is approximately 17 percent of the total electricity the utility provided to the entire 

island in 2012. Based on these findings, full rooftop PV installations on the 4,460 study 

area homes could provide enough energy to power over 31,000 homes annually. 

The methods developed here suggest a means to calculate rooftop area and PV 

potential in a region with limited available data. The use of LiDAR point data offers a 

major opportunity for future research in both automating rooftop inventories and 

calculating incoming solar radiation and PV potential for homeowners. 
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CHAPTER 1: INTRODUCTION 

1.1 Renewable Energy and Trends in Solar Photovoltaic Energy Production 

Around the globe, concern is mounting over conventional carbon based energy 

production. The issues at hand are numerous and include increasing atmospheric carbon 

dioxide concentrations from greenhouse gas emissions, environmental safety of energy 

production techniques, volatile energy prices, and depleting carbon based fuel reserves to 

name a few (Nguyen and Pearce 2010; Choi et al. 2011). As a result, countries are facing 

an increasing challenge to diversify energy sources and bringing renewable generation to 

the forefront of policy discussion.  

In the United States, a rise in renewable energy generation has been supported by 

the availability of federal tax credits and programs in individual states (U.S. Energy 

Information Administration 2013a). Many states are implementing renewable portfolio 

standards, or renewable energy standards, that outline goals to increase electricity 

generation from renewable resources (U.S. Energy Information Administration 2013a). 

These policies seek to remove barriers to install renewable generation and can include 

grant programs, loan programs, and state renewable electricity tax credits. The Database 

of State Incentives for Renewables & Efficiency (DSIRE) provides an outline of state 

renewable portfolio standards available throughout the nation (North Carolina State 

University 2013). 

In 2012, about 12 percent of U.S. electricity was generated from renewable 

sources (U.S. Energy Information Administration 2013b). The United States Energy 

Information Administration states that the five renewable sources most often utilized 

include biomass, water, geothermal, wind and solar (U.S. Energy Information 
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Administration 2013b). Of these, hydropower (water) contributed 7 percent of renewable 

electricity generation (U.S. Energy Information Administration 2013c). The other 

common renewable sources make up the remaining 5 percent including wind (3.46 

percent), biomass (1.42 percent), geothermal (0.41 percent), and solar (0.11 percent) 

(U.S. Energy Information Administration 2013c).  The study presented in this manuscript 

focuses on renewable generation from solar energy.  

Solar energy is received from the sun’s light rays hitting the earth and is 

commonly referred to as solar radiation (U.S. Energy Information Administration 2013d). 

Solar radiation can be harnessed and converted to electricity by photovoltaic (PV) 

technologies. Photovoltaic cells produce electricity by absorbing photons and releasing 

electrons that can be captured in the form of an electric current (Knier 2011). Cells can be 

used individually to power small electronics or grouped together into modules and arrays 

to generate larger amounts of power (U.S. Energy Information Administration 2013d). 

PV array systems are becoming an increasingly popular means for powering residential 

and commercial locations in the form of distributed generation (Loudat 2013).   

The photovoltaic market in the United States has grown tremendously in the last 

decade (U.S. Energy Information Administration 2013a). PV is a robust technology that 

possesses a great deal of potential because it is both scalable and geographically 

dispersed (Pearce 2002; Zekai 2004; Nguyen and Pearce 2010; Choi et al. 2011). In an 

article in Renewable Energy Focus, Dianna Herbst (2009) explains how PV production 

has been doubling every two years, increasing by an average of 48 percent each year 

since 2002, making it the world’s fastest growing energy technology. In 2012, PV 
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technology consisted of 12 percent of all new U.S. electricity generation (Interstate 

Renewable Energy Council (IREC) 2013).  

Despite a banner year for solar technologies in 2012, it only comprises 0.11 

percent of overall electricity generation in the United States and many barriers to the 

wide scale adoption of photovoltaic production still exist (U.S. Energy Information 

Administration 2013c). Initial cost is a major barrier to implementation of PV systems 

(Súri and Hofierka 2004). Even with falling prices, renewable sources of energy are still 

expensive compared to traditional fossil fuel generation. The expense of installation and 

lack of information to quantify PV technology capacity, and thus predicting return on 

investment, are a few of the barriers facing the industry today (Choi et al. 2011; Herbst 

2012). Beyond financial factors there are a number of social and regulatory factors that 

can influence a consumer’s decision to purchase solar panels.  

In addition to existing renewable portfolio standards and tax credits, many state, 

city and local governments to break down barriers for distributed PV installation have 

implemented GIS-based modeling and decision support tools (Voivontas, 

Assimacopolous and Mourelatos 1998). Online solar potential maps are one type of 

decision support tool that is becoming increasingly popular throughout cities in the 

United States.  Currently cities such as Boston, Denver, New York, Portland, San Diego, 

and San Francisco host online solar potential mapping sites available to the public. These 

allow users to evaluate the geographical, technological and financial factors that affect 

system performance and then predict the costs and benefits associated with installing 

solar PV panels for both residential and commercial buildings.  
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1.2 Electricity Demand in Hawaii 

The economic consequences of fossil fuel dependence are profound in Hawaii. 

Figure 1.1 outlines the breakdown of electric energy sources as of February 2013 (U.S. 

EIA 2013e). The state relies on petroleum for 73 percent of its electricity generation and, 

with no indigenous fossil fuel resources like oil or coal, Hawaii must import the majority 

of its energy resources (Piwko, et al. 2012; State of Hawaii Department of Business, 

Economic Development and Tourism (DBEDT) 2013a). The island chain is located over 

2,500 miles from any major land mass which greatly increases the cost of transport and 

translates into electricity rates that are three times greater than the U.S. average (Piwko et 

al. 2012; DBEDT 2013a; U.S. EIA 2013e). 

 
Figure 1.1 Breakdown of electric energy sources in Hawaii  

(Source: Electric Power Monthly, U.S. EIA 2013e) 
 

Despite the state’s dependence on imported oil, there simultaneously exists an 

abundance of renewable energy generation sources including geothermal, ocean power, 

wind, and sunshine. To harness these, the state has one of the most aggressive clean 

energy goals in the nation. The Hawaii Clean Energy Initiative (HCEI) was launched in 
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2008, when the governor of the State of Hawaii and the U.S. Department of Energy 

signed a historic agreement committing the state to achieve 70 percent clean energy by 

2030 (HCEI 2010). This 70 percent will be comprised of 30 percent energy efficiency 

and 40 percent generation from local renewable sources (HCEI 2010). Various scenarios 

for achieving this goal have been proposed by several working groups comprised of local 

stakeholders and national experts. The HCEI remains an ongoing, collaborative effort 

within which rooftop solar generation plays a significant role in the path to achieving 

energy independence in the State of Hawaii (HCEI 2011).  

A number of documents produced by the Hawaii Clean Energy Initiative and the 

State of Hawaii Department of Business and Economic Development (DBEDT) reference 

the importance of increasing solar generation capacity in order to meet renewable energy 

goals (Global Energy Concepts 2006; Braccio, Finch and Frazier 2012). In an analysis of 

the Hawaii Clean Energy Initiative End State 2030 Scenarios, estimates for installed 

capacity for residential rooftop solar ranged between 67-205 Megawatts (MW) (Braccio 

et al. 2012). The most ideal end state scenario suggested by the working group proposes 

179 MW of residential rooftop solar by the year 2030 (Braccio et al. 2012).   

1.3 Growth of Solar Photovoltaic in Hawaii 

In the five years since the Hawaii Clean Energy Initiative was enacted, solar 

generation has seen unprecedented growth. The United States Energy Information 

Administration (2012) states that solar PV capacity increased by 150 percent in 2011, 

making it the eleventh largest state for PV capacity. In 2012 the growth rate was 182 

percent moving it up to the seventh slot (DBEDT 2013a; IREC 2013). In a recent 

publication of Hawaii Energy Facts and Figures, DBEDT states the 2013 installed 
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capacity for distributed PV at 223 MW. Residential rooftops represent 28,351 systems 

contribute 57 percent of this total or approximately 127 MW (DBEDT 2013a).  

 This growth can be attributed to a combination of falling prices, federal and state 

solar tax credits, and increased use of leases with third party ownership for systems 

(IREC 2013). Financial incentives work for the solar industry by lowering the cost of 

panels thus enhancing the affordably of solar photovoltaic systems for both residential 

and commercial buildings (Kerschen 2012). A recent study performed by the Blue Planet 

Foundation explains how Hawaii’s solar tax credit has been extremely effective at 

making the state a leader in both PV and solar water heating (Loudat 2013). Based on 

these trends, one might think there is no need to assess overall PV potential as Hawaii 

will continue to witness exponential growth as they march towards their clean energy 

goals. This may not, however, be the case for long.   

 The majority of PV systems in Hawaii are net energy metered (DBEDT 2013a). 

Net energy metering gives residential and commercial customers the ability to feed 

excess solar energy to the utility grid and receive full retail value to offset the electricity 

supplied to them by the utility (Hawaii Electric Company (HECO) 2013). Each 

distribution circuit has specific penetration levels of non-firm solar power that are 

deemed acceptable in order to ensure reliable service on that circuit (HECO 2013). High 

penetration of residential and commercial distributed generation from solar thus brings 

additional concerns regarding interconnection and grid saturation (Mangelsdorf 2013a, 

2013b and 2013c; IREC 2013).   

 Each of the main islands has an independent electricity grid.  Because there are no 

interconnections between islands there is a critical risk of grid saturation (Piwko et al. 
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2012; DBEDT 2013a). The Hawaii Electric Company serving Oahu and its subsidiaries, 

Maui Electric Company (MECO) serving the county of Maui (Maui, Lanai and Molokai) 

and Hawaii Electric Light Company, Inc. (HELCO) serving Hawaii Island, maintain that 

circuits with distributed generation capacity less than 15 percent peak load may qualify 

for simple interconnection (HECO 2013). For those over 15 percent, further investigation 

may be necessary before systems can be added. Each utility maintains its own maps that 

allow customers to view a summary of distributed generation peak load by circuit (HECO 

2013). 

 At the time this project research was being conducted, circuit saturation was a 

critical issue. One just need peruse the local newspapers to see references to solar 

‘feeding frenzy’ and solar market consolidation (Mangelsdorf 2013a, 2013b and 2013c).  

As of September 2013, HECO and its subsidiaries issued an update asking all customers 

to receive approval prior to any installation moving forward (HECO 2013; HELCO 2013; 

and MECO 2013).  This has slowed the interconnection process spurring outrage from 

many customers waiting to connect their recently installed solar PV systems. 

1.4 Solar Photovoltaic Research on Hawaii Island 

It is important to note that while the Hawaii Clean Energy Initiative is a statewide 

effort, each county has its own clean energy initiatives that inform the steering committee 

at the state level (HCEI 2011). Each county has its own unique demographic and 

environmental characteristics that influence renewable generation capacity. The work 

discussed in this paper focuses on Hawaii Island, commonly referred to as the “Big 

Island,” as it is the largest and youngest island within the Hawaiian archipelago. The total 

population of Hawaii Island is a little over 185,000 and the population density is 
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relatively low at about 46 people per square mile. The area chosen for evaluation in this 

study lies on the leeward side of the island in the town of Kailua Kona. It is 

approximately 628 Km2 and extends about 44 kilometers north to south over Kailua 

Kona. 

 Hawaii Island is serviced by the Hawaii Electric Light Company, Inc. (HELCO). 

The utility has a total generating capacity of 359 MW and experiences a system peak of 

189 MW (HELCO 2013). In 2012 HELCO provided 1,085 Gigawatt-hours (GWh) of 

electricity to the Big Island (DBEDT 2013a).  Residential customers utilized 38 percent 

of this energy, or 412.3 GWh (DBEDT 2013a). In June 2013, DBEDT listed the total 

number of PV systems for the Big Island at 3,913 with a capacity of 28.9 MW. Of these 

an estimated 92 percent, or approximately 3,600, are residential. These residential PV 

systems have a total capacity of 15.84 MW (DBEDT 2013a).   

 Much like the rest of the state, Hawaii Island residents are seeing the effects of 

circuit saturation associated with distributed PV generation. In the face of growing 

uncertainty, it seems more important than ever for residents to understand the total solar 

photovoltaic potential on their rooftops based on their location and the factors that affect 

PV performance before making a significant investment in this technology. To date, 

investigation into the future PV generation potential on the Island of Hawaii has not been 

as common as it has been elsewhere. In one study produced in 2007 by The Kohala 

Center, an independent research institute, HELCO estimates that with the continued 

subsidies installed solar generating capacity on the Big Island could be between 80-130 

MW by 2030 (Davies et al.2007). Beyond this, little else could be found regarding the 

total distributed PV generation potential for this Island. 
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 The research presented in this study utilizes the modeling and analytical power of 

geographic information systems (GIS) with statistical analysis to answer the question: 

What is the solar PV potential of residential rooftops in the town of Kailua Kona on 

Hawaii Island? The study calculates total PV potential for a sample set using Esri’s solar 

radiation modeling tools and existing PV equations. It then uses statistical analysis to 

extrapolate the findings to the entire study area.   

While a number of solar PV mapping initiatives exist throughout world, this 

research will be the first study of its type on the Big Island. It is an effort to quantify the 

magnitude of possible solar PV electric energy generation on residential rooftops within 

the specific study area. The hope is that this can be a launching point for future studies 

using LiDAR data to evaluate rooftop solar potential. 

The next chapter includes a review of existing literature that pertains to the goal 

of this study.  Three main areas were addressed in the execution of this research: (1) 

modeling solar radiation, (2) estimating available rooftop area, and (3) calculating PV 

potential from incoming solar radiation. The literature review also includes a discussion 

of existing solar mapping efforts. The material discussed in the literature review was used 

to inform the methods chosen for this study. The remaining chapters 3, 4, and 5 outline 

the methodology, results and conclusions for the work completed.   
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CHAPTER 2: LITERATURE REVIEW 

The potential for photovoltaic electricity generation on rooftops depends on a number of 

global, local, temporal, and spatially variable conditions (Redweik, Catita, and Brito 

2011). The literature review included here discusses the factors that influence PV 

potential including incoming solar radiation, available rooftop area, and the effects of 

panel efficiency. Section 2.1 and 2.2 discuss existing methods for modeling incoming 

solar radiation with GIS, Section 2.3 discusses rooftop calculation methods and Section 

2.4 addresses methods for calculating photovoltaic potential from solar radiation. The 

chapter concludes with a review of solar mapping initiatives in Hawaii.    

2.1 Modeling Solar Radiation  

It can be argued that the most important factor influencing photovoltaic electricity 

generation is the amount of incoming solar radiation. Solar radiation, or insolation, is the 

sun’s energy reaching the earth’s surface.  It is comprised of three components: direct 

beam, diffuse, and ground-reflected radiation (Perez et al. 1987). Figure 2.1 displays the 

way the three components reach the earth’s surface. 

 
Figure 2.1 Incoming solar radiation components  
(Source: International Building Performance Simulation Association 2011)  
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Direct radiation is the direct beam of solar energy that is intercepted by the 

surface without any interactions with particles in the atmosphere (Hetrick, Rich and 

Weiss 1993). Diffuse radiation is the intercepted radiation that is scattered in the 

atmosphere by gases and aerosols (Hetrick et al. 1993; Kumar, Skidmore and Knowles 

1997). Reflected radiation is reflected from terrain and surrounding surfaces (Kumar et 

al. 1997, Esri 2013a). Together, direct, diffuse and reflected radiations make up global 

radiation, or total radiation, reaching the surface. 

The amount of solar radiation reaching the surface depends on location, 

atmospheric effects, and topography. Solar radiation is affected by the earth’s geometric 

rotation and revolution around the sun (Fu and Rich 1999). It also varies with 

environmental factors like atmospheric attenuation effects including cloud cover and 

water vapor (Fu and Rich 1999). On the ground, topographic effects such as elevation, 

slope, and orientation influence the amount of radiation reaching a surface (Kang, Kim 

and Lee 2002; Súri and Hofierka 2004). 

Understanding the amount of solar radiation reaching a surface is important for 

more than just evaluating renewable energy potential. Almost all human activities depend 

on the sun’s power (Fu and Rich 1999). Unfortunately, for most geographical areas, 

measured insolation data are incomplete or are available only at a very coarse scale (Fu 

and Rich 1999). Solar radiation data are measured at a number of ground stations around 

the world but because solar irradiation levels can vary drastically with the terrain, 

vegetation, ground structures and weather, in most cases it is not accurate to just use the 

nearest weather station in one’s analysis. Studies have found that solar irradiance data 
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collected from stations 20-30 kilometers from a project can have a root mean square error 

as much as 25 percent (Perez, Seals and Zelenka 1997).  

To overcome the scarcity of trustworthy measured solar radiation data, a number 

of empirical models have been developed to predict the amount of solar radiation 

reaching the earth’s surface at a given point (Katiyar and Pandey 2013). These include 

those developed by Perez, Zhang, Kasten and Muneer (Seo 2010). Seo (2010) provides 

an extensive overview of existing empirical models developed to predict the intensity of 

solar radiation on the earth’s surface. Clear sky models commonly use inputs such as 

solar angle, clearness index, beam and diffuse fraction, and average efficacy values in 

their calculations (Seo 2010). All-sky models are typically derived from clear sky models 

but consider additional variables like cloud cover and cloud layers in order to account for 

intermediate and overcast skies (Robinson and Stone 2004; Seo 2010). Despite the large 

number of models developed, no existing model is universally applicable. Models differ 

mainly in their consideration of the diffuse component of incoming radiation (Perez et al. 

1987). This depends mostly on climate and regional terrain conditions (Súri and Hofierka 

2004). In fact, most are developed and validated for a particular region (Seo 2010). The 

choice of model depends on the conditions in the area of study and the scale of analysis.   

2.2 Solar Radiation Models with GIS 

In the last two decades, several empirical solar radiation models have been 

enhanced by the use of geographic information systems tools. The faster processing 

capabilities associated with GIS platforms allows for integration of sophisticated solar 

radiation models and additional consideration of the effects of topography on incoming 

solar radiation (Dubayah and Rich 1995). GIS tools let the user examine the temporal and 
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spatial variability of incident solar radiation on a landscape level (Rich et al. 1994). 

Integrating solar radiation models within GIS has helped to eliminate the complexity of 

programming GIS functions into mathematical models (Nguyen and Pearce 2010). 

Moreover, solar radiation models with GIS can also incorporate environmental and socio-

economic datasets for scenario modeling of interest to policy makers (Nguyen and Pearce 

2010).  

SolarFlux is one of the original GIS-based models (Súri and Hofierka 2004). It 

was implemented in the ARC/INFO platform as an ARC Macro Language (AML) 

program (Dubayah and Rich 1995). This tool simulates the influence of shadow patterns 

on direct insolation at specific intervals through time (Helios Environmental Modeling 

Institute, LLC 2000). It uses the input of a topographic surface with elevation values, 

latitude, time interval for calculation, and atmospheric conditions (Dubayah and Rich 

1995). The output provided shows direct radiation flux, duration of direct radiation, 

skyview factor and diffuse radiation flux for each surface location (Dubayah and Rich 

1995). While originally implemented at a variety of temporal and spatial scales, Súri and 

Hofierka (2004) explain how Solarflux uses simple empirical formulas wherein input 

parameters are averaged and therefore does not perform well when calculating over large 

areas.  

The SRAD model calculates complex short-wave and long-wave interactions of 

solar energy with the earth’s surface and atmosphere (Wilson and Gallant 2000; Súri and 

Hofierka 2004). The model is based on simplified underlying physics but incorporates the 

main solar radiation factors to account for the spatial variability of landscape processes 

(Sheng, Wilson and Lee 2009). It was designed to calculate solar radiation as a function 
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of latitude, slope, aspect, topographic shading, and time of year with modifications for 

cloudiness and sunshine hours (Wilson and Gallant 2000). Surface temperature is also 

extrapolated across the landscape (Sheng, Wilson and Lee 2009).  This model is 

specifically designed for topo- and meso-scale processes so is not ideal for calculation of 

solar radiation over larger surfaces (Súri and Hofierka 2004).  

The r.sun model can be used at various map scales and was developed to 

overcome shortcomings of other models’ limited applicability for larger regions. It is 

based on the equations published in the European Solar Radiation Atlas (ESRA) and is 

fully integrated in the GRASS GIS environment (Súri and Hofierka 2004). The r.sun 

model calculates all three components of solar radiation (beam, diffuse and reflected) for 

both real sky and clear sky conditions (Súri, Huld and Dunlop 2005). The inputs include 

elevation, slope, aspect and solar time (Súri and Hofierka 2004). As mentioned 

previously, one of the main differences between various solar radiation models is the way 

the diffuse component is handled.  The r.sun model is designed to calculate diffuse 

radiation specifically reflective of European climate conditions (Súri and Hofierka 2004).  

2.2.1 Esri’s Solar Analyst 

Esri’s Solar Analyst was developed to draw on the strengths of accurate point 

specific radiation models while quickly and accurately generating insolation maps over 

an area of landscape (Helios Environmental Modeling Institute, LLC 2000). It is 

conveniently available as part of Spatial Analyst extension allowing easy integration with 

other analysis tools available in Esri’s ArcGIS. This model is discussed at length here as 

it was chosen for use in the work presented in this study.  
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Solar Analyst calculates solar radiation using the hemispherical viewshed model 

originally developed by Rich in 1990 and later enhanced by Fu and Rich (1999). A 

viewshed is the distribution of sky obstruction, or the view of the sky looking upward 

from each point on the ground (Helios Environmental Modeling Institute, LLC 2000). 

The model calculates the viewshed for each cell in the input digital elevation model as 

the visible sky changes based on topography (Fu and Rich 1999).  

Solar radiation is presented as global radiation, which is calculated as the sum of 

direct and diffuse radiation for a point or an area. Direct and diffuse totals are added to 

determine total global radiation in watt-hours per square meter (Wh/m2). Reflected 

radiation is not included in the calculation. The viewshed is overlaid on a direct sunmap 

to estimate direct radiation and a diffuse skymap to estimate diffuse radiation (Esri 

2013a). The sunmap is a representation of position of the sun over time. The sun track for 

each cell depends on the location and the time of day and year. When calculating direct 

radiation the tool determines whether the sky is visible or obstructed for each cell in this 

surface grid, it identifies the solar constant, transmittivity, time duration, the portion of 

visible sun, and the angle of incidence (Esri 2013a).  

Skymaps are used to calculate diffuse solar radiation because it can originate from 

any sky direction. The entire sky is divided into sectors to create the skymap. Sectors are 

determined by the zenith and azimuth divisions. The diffuse solar radiation variables 

identified by the tool for each location include the global normal radiation, the proportion 

of global radiation that is diffused (this varies between 0.2 for clear sky conditions and 

0.7 for cloudy sky conditions), the time interval, the proportion of visible sky, the angle 

of incidence, and the weighted proportion of diffuse radiation originating in a sky sector 
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compared to all sectors (Helios Environmental Modeling Institute, LLC 2000; Esri 

2013a).  

The strengths of this toolset lie in its flexibility. A user is able to account for any 

time period, site latitude, elevation, surface orientation and atmospheric attenuation (Fu 

and Rich 1999). The user can set the sky size resolution of the viewshed, the number of 

azimuth directions used for the viewshed, and the diffuse proportion (based on 

atmospheric conditions), slope and aspect input types, the amount of azimuth and zenith 

divisions, and the diffuse model conditions (Esri 2013a). 

Despite all its strengths, the Solar Analyst also has limitations in its 

implementation. As mentioned previously, it does not calculate reflected radiation. 

Although, Fu and Rich (1999) argue that the contribution from reflected radiation is 

generally small unless the area has a high albedo.  The tool also does not take into 

consideration cloud cover directly.  The user must modify the transmittivity and diffuse 

proportion to account for these effects. Finally, the tool is only as accurate as the Digital 

Elevation Model provided as input. In cases where the built environment and surrounding 

terrain can greatly affect the solar radiation results for the surface, this can be particularly 

problematic (Fu and Rich 1999).  

Generally speaking, with limited snow cover, Hawaii does not have a high albedo 

on its land surface but cloud cover in the study area can play a significant role in the 

afternoon. These factors must be taken into account when selecting input parameters. The 

creation of a high resolution digital surface model (DSM) is also necessary to account for 

the effects of shading from buildings and vegetation around rooftops. 
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2.3 Calculating Rooftop Area 

This study seeks to calculate the photovoltaic potential for residential rooftops in 

the town of Kailua Kona. In order to do so, it is necessary to calculate the amount of 

rooftop space in the study area. As explained by Jakubiec and Reinhart (2012), two of the 

most crucial components for calculating PV potential include the amount of solar 

radiation reaching the surface and the amount of useable rooftop area that can be 

dedicated to photovoltaic panels. 

A number of studies have outlined methods to extract building or rooftop shapes 

for analysis. In many cases the methodologies have relied heavily on the existence of 

high resolution satellite or remotely sensed imagery. For the most advanced analysis, it is 

ideal to have 3D models in which individual buildings are represented next to other 

objects like trees and man-made structures. Nguyen et al. (2012) explain how accurate 

building generation from Light Detection and Ranging (LiDAR) data requires a number 

of processes including building detection, object segmentation, roof shape reconstruction, 

and modeling quality analysis. These techniques are often only possible with high cost 

data and feature recognition software. In some cases existing building shape or outline 

datasets are also utilized to assist with building detection and segmentation (Nguyen et al. 

2012).       

Jo and Otanicar (2011) propose a methodology for quantifying the usable rooftop 

surface by accounting for existing obstructions like chimneys, air conditioning equipment 

and skylights that would limit the space available for PV panels. They utilize Quickbird 

remotely sensed images processed by Definiens Developer software along with existing 

building shapefiles for the four-square mile study area in Chandler, Arizona (Jo and 
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Otanicar 2011). The object-oriented analysis utilizes brightness indicators to identify 

obstructions on rooftops and then calculates shadow effects associated with these objects 

(Jo and Otanicar 2011).  

In situations where advanced processing software and lack of building boundary 

data are limiting factors, there are other more simplistic techniques employed to estimate 

available rooftop space. In a pilot study published in Esri’s ArcUser magazine, Chaves 

and Bahill (2010) describe a simple method for isolating building rooftops by classifying 

suitable elevations as those cells with an elevation greater than or equal to bare earth 

elevation plus five feet. Similarly, for the Los Angeles County Solar Mapping Portal 

(2010), ground elevations were first subtracted from the digital surface model and then 

the Normalized Difference Vegetation Index (NDVI) was utilized to isolate live 

vegetation within each cell. To create the building surface, live vegetation was removed 

along cells with a height below eight feet (LA County 2010). Furthermore, a number of 

authors around the world have explored the relationship between population density and 

rooftop area. Izquiredo, Rodrigues and Fueyo (2008) use accessible data like population, 

land use and building density and explore their relationship with roof area in Spain.  

Another study of particular interest was completed by Wiginton, Nguyen and 

Pearce for the province of Ontario, Canada (2010). This study designed a five-step 

procedure to overcome limited rooftop data. The study area was first stratified based on 

low, medium, and high population density (Wiginton et al. 2010). A representative 

sample was then selected from the stratified classes to reflect the distribution of 

population density within the region. The Feature Analyst extraction tool was then used 
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to isolate rooftops in the sample set based on available high resolution orthophotos 

(Wiginton et al. 2010).  

Rooftop areas were plotted against population density to determine the existing 

relationship. Their results indicated a total roof area of 70 m2/capita +/- 6.2%, although 

the stratified analysis indicated rooftop area per capita decreases with increasing 

population density (Wiginton et al. 2010). The equation built from this sample set 

analysis was used for extrapolation to estimate gross rooftop area for the entire region. 

The study goes on to reduce overall rooftop area to account for usable area based on 

characteristics of residential and commercial rooftops in the sample set (Wiginton et al. 

2010). Finally, rooftop photovoltaic potential was calculated using the average global 

insolation and various types of photovoltaic panels (Wiginton et al. 2010).   

2.4 Calculating Photovoltaic Potential from Solar Radiation 

Understanding available solar radiation and rooftop area are essential components 

when calculating photovoltaic electricity potential but there are also technological 

considerations to take into account. These include photovoltaic panel efficacy, tilt, and 

proper maintenance. Additionally, it is necessary to account for losses during conversion 

from the photovoltaic produced direct current (DC) to useable alternating current (AC).  

In order to assist in understanding the variability associated with PV potential, a 

number of simulation tools have been created. Some of these specifically complement the 

solar energy GIS models discussed in the previous section, others use interpolated solar 

radiation surface datasets. Choi et al. (2011) explain how these efforts have helped 

overcome existing barriers to implementing PV penetration by providing information 

needed for design, financing, and operation of PV systems. This section discusses some 
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of the PV simulation tools available and the variables considered in the formulas utilized 

to calculate PV potential from solar radiation data. 

The National Renewable Energy Laboratory developed the PVWatts (Version 1 

and Version 2) simulation tools to estimate energy production for grid-connected 

crystalline silicon PV systems (Marion et al. 2001). These tools use typical 

meteorological (TMY and TMY2) solar datasets derived from the National Solar 

Radiation Database (Marion et al. 2001). PVWATTS Version 1 uses data from 239 

existing stations, while PVWATTS Version 2 translates this station data into a 40-km 

solar radiation grid taking into account global, direct, and diffuse radiation along with 

monthly temperatures and average surface albedo (Marion et al. 2001; Jakubiec and 

Reinhart 2012).  The user selects the PV system parameters including panel rated size, 

tilt, orientation and AC to DC derate factor (Marion et al. 2001). The National Renewable 

Laboratory (2013) suggests a standard derate factor of 0.77 to account for the following 

system losses: inverter and transformer, mismatch, diodes and connections, DC wiring, 

AC wiring, soiling and system availability.  

Along with their development of the r.sun irradiance calculation model, Súri et al. 

(2005) also created the Photovoltaic Geographical Information System (PV-GIS) 

database for Europe and Africa (Choi et al. 2011). The PV-GIS web tool uses the 

following equation (Equation 1) to calculate the yearly potential of an installed 

photovoltaic system. 

E= 365Pkrp Hh,i  !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Equation 1  

Where E is the yearly potential for electricity generation in kilowatt hours (kWh), 

Pk is the peak power of the equipment installed in kilowatts (kW), rp is the system 
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performance ration or derating factor, and Hh,i is the monthly or yearly average of daily 

global radiation in watt-hours (Wh). In the development of the r.sun based PVGIS web 

calculator, the system performance ratio (rp) utilized for mono- and polycrystalline silicon 

panels was .75 (Súri et al. 2005).    

Hofierka and Kanuk (2009) also utilize the PVGIS estimation utility for their 

assessment of photovoltaic potential in urban areas. They suggest a similar formula 

(Equation 2) where total annual electricity output in kWh for a system is assessed by the 

following equation: 

Eout= Ae  Ee G !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Equation 2 

Where Eout is the annual electricity production in kWh, Ae is the total surface area of 

solar cells in square meters (m2), Ee is the annual mean power conversion efficiency 

coefficient for each PV technology, and G is the annual total global irradiation (Wh/m2). 

This is also quite similar to Clark, Klein and Beckman’s formula published in 

Solar Energy in 1984, where the main variables affecting PV potential include area of the 

photocells, monthly average hourly radiation, and average efficiency of the array 

(including any power conditioning equipment).  

Beyond module efficiency and standard derating, Jakubiec and Reinhart (2012) 

suggest derating panel efficiency based on ambient temperature, as temperature is known 

to have an adverse effect on panel production. In their recent study performed at the 

Massachusetts Institute of Technology, they incorporated work performed in the National 

Renewable Laboratory’s PVWatts Calculator Version 2 to build the following equations 

(Equation 3 and Equation 4) to approximate derating of PV panels based on temperature 
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and point irradiation data at an hourly time step (Marion et al. 2001; Luque and Hegedus 

2011; and Jakubiec and Reinhart 2012). 

TC = Tamb + (T0 - 20°C)E/800Wm-2!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Equation 3 

Where TC is the photovoltaic panel temperature °C, Tamb is ambient temperature in 

degrees Celsius (°C), T0 is the nominal operating cell temperature at ideal conditions °C 

and E is the incident radiation in W/m2 at each time step. 

Pmp = Pmp0 * [1 + ! * (TC- T0)] !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Equation 4   

Where Pmp is the derated panel max DC power in watts (W), Pmp0 is the 

photovoltaic maximum power at ideal conditions (W) and " is the temperature correction 

factor equal to 0.0038 °C-1. 

Similarly, Choi et al. (2011) also argue that simplistic formulas like that proposed 

by Hofierka and Kanuk (2009), while easily integrated into GIS software, do not account 

for intermittent behavior of solar irradiance and the dynamic performance of PV systems. 

In a study published in Solar Energy, they cite the weaknesses of PV-GIS and PVWatts 

Version 2 for urban studies as the tools impose a coarse spatial resolution for calculations 

(Choi et al. 2011). They explain how even though solar modeling tools like r.sun and 

Solar Analyst allow the user to choose a higher spatial resolution, they are focused on 

solar irradiation and not the assessment of PV potential (Choi et al. 2011). To combat 

these weaknesses the authors suggest their PV Analyst extension for ArcGIS which 

incorporates 4 and 5-parameter PV performance models with irradiance data in TRNSYS 

(Choi et al. 2011). The PV Analyst extension is intended accurately simulate 

performances of mono- and polycrystalline silicon PV arrays using data available from 
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manufacturers including: short circuit current, open circuit voltage, voltage and current at 

maximum power point, and temperature coefficient of open circuit voltage and short 

circuit current (Choi et al. 2011).   

2.5 Solar Mapping Projects as Decision Support Tools 

As mentioned in the introduction chapter, solar mapping applications can be 

considered GIS-based decision support tools for solar PV potential. These tools assist 

energy planners, advisors, and policy makers in evaluating the potential for the 

dissemination of renewable energy technologies. They can also provide a unique benefit 

by incorporating an analysis of the financial considerations associated with the 

investment. As stated by Voivontas, Tsiligiridis, and Assimacopoulos, “GIS provides a 

promising approach that can reveal spatial and time discrepancies of solar potential and 

energy demand (1998, 419).”  

The increased functionality afforded by a mapping application is very useful for 

the potential solar adopter. Common mapping applications for solar potential allow the 

user to identify their location and specific household characteristics to get a series of 

predictions of production from PV system, electricity savings in dollars, carbon savings, 

system payback, and information on local incentive programs (Jakubiec and Reinhart 

2012). Jakubiec and Reinhart (2012) explain how these websites rely on various GIS 

modeling techniques that differ based on solar radiation calculations, spatial and temporal 

accuracy of data, and software used to perform the analysis. 

For the most part, a handful of GIS-based solar radiation models have been 

employed to generate the majority of solar maps created for U.S. municipalities. For the 

eleven solar potential maps created for popular North American cities reviewed by 
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Jakubiec and Reinhart (2012), the most commonly used methodologies for rooftop 

irradiation maps include the National Renewable Energy Laboratory PVWatts calculator 

and Esri’s Solar Analyst.  

While an abundance of literature about city and municipal solar mapping projects 

exists, there is rather limited information available on similar efforts in rural 

communities. Lietelt (2008) explains how the lack of integration of solar mapping into 

communities less dense than larger cities and municipalities may be attributed to limited 

interest or the unavailability of suitable data. This research initiative seeks to identify and 

implement suitable techniques for mapping solar PV potential on the Island of Hawaii, a 

County with a low population density of about 45 people per square mile.   

2.6 Hawaii Solar Mapping Projects 

To date, a handful of solar modeling and mapping efforts have been undertaken in 

the State of Hawaii. They are described in the remainder of this chapter. The main 

contributors to this work have been the United States Department of Energy through the 

National Renewable Energy Laboratory (NREL), the Hawaii Natural Energy Institute 

(HNEI) at the University of Hawaii at Manoa, the State of Hawaii Office of Planning and 

Department of Business, Economic Development and Tourism, and the utilities including 

the Kauai Island Utility Cooperative (KIUC) and Hawaii Electric Company (HECO) and 

its subsidiaries. The various efforts are described below by Island.  

2.6.1 Oahu 

In 2012, HNEI jointly sponsored a solar modeling and integration study with 

NREL and HECO, which was presented at the 2nd Annual International Workshop on 

Integration of Solar Power in Power Systems Conference (Piwko et al. 2012). This study 
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focused on the Island of Oahu and was a follow up to the Oahu Wind Integration Study 

completed in 2010 (Piwko et al. 2012).  This solar integration study looked at the impact 

of higher penetration of solar energy into the Oahu electric grid from both centralized and 

distributed PV plant scenarios (Piwko et al. 2012).  

The solar data developed for this work consisted of 2-second solar power 

production profiles for Oahu and downward shortwave radiation every ten minutes 

during 2007-08, for every point on a one kilometer spaced grid over all the Hawaiian 

Islands (Matthias Fripp, Professor University of Hawaii, email 28 March 2013). These 

datasets were developed with the AWS Truepower proprietary software using weather 

station data from 2007-2008 (Piwko et al. 2012; AWS Truepower 2013). The software 

utilizes a Numerical Weather Prediction (NWP) model coupled with a stochastic-

kinematic cloud model (Piwko et al. 2012). This data had not been published for use in 

the public domain at the time of this research project was underway.  

The Blue Planet Foundation, a local nonprofit organization committed to 

Hawaii’s clean energy future, has developed a Solar Portal that is currently in beta testing 

(blueplanetfoundation.org/solar-portal.html). The portal is designed to be a resource for 

both existing and new solar installation customers providing location information and 

resources including contractor information and educational videos. The site does not 

incorporate incoming solar radiation information but rather provides the location of 

existing solar PV and solar thermal hot water systems allowing users to search their 

neighborhood and add comments and feedback about their solar systems and contractors. 

At the time this research was conducted the main sources of data for the portal were the 
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City and County of Honolulu and the Department of Planning and Permitting.  

Installation locations were listed only for Oahu, neighbor-island data was still pending.  

 The State of Hawaii has also recently added a solar roof potential 3D model with 

coverage from downtown Honolulu to Diamond Head (State of Hawaii Office of 

Planning 2013). It is available for download at the Office of Planning, Statewide GIS 

Program website. This data was produced by CyberCity 3D, and acquired by the Hawaii 

State Office of Information Management and Technology in February 2013. The data 

was derived from 2008 remote sensing imagery and converted to 3D models using 

CyberCity proprietary software (State of Hawaii Office of Planning 2013). This data 

includes building rooftop height and area along with their solar potential.  CyberCity 3D 

quantifies solar potential assessing the roof angle, surface area and solar azimuth 

(orientation).  This dataset characterizes solar potential based on a ranking of 0- no to low 

solar potential, 1- medium solar potential, and 2- high solar potential. Roof areas with a 

high solar potential (2) are those with a minimum of 100 square feet and an orientation 

from 161 degrees to 200 degrees (State of Hawaii Office of Planning 2013). 

2.6.2  Kauai 

The National Renewable Energy Laboratory in conjunction with Kauai Island 

Utility Cooperative, has conducted an island wide solar photovoltaic assessment in Kauai 

(Helm and Burman 2010).  This project customized the In My Back Yard (IMBY) 

software that utilizes the PVWatts performance model to Kauai environmental conditions 

and utility load information. The goal of the project was to create created a tool help 

promote renewable adoption on the Island (Helm and Burman 2010). 
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Appropriate commercial rooftop area was estimated using satellite imagery and 

taking into account aspect, rooftop obstructions and shading potential. Rooftops were 

chosen mainly because of their large area unobstructed by air conditioning equipment.  

The findings identified 136,412 square meters of useable commercial rooftop area for 

photovoltaic installations and calculated a total potential of 15,938 MWh/year (Helm and 

Burman 2010). The study did not, however, address the economic feasibility of installing 

PV on the suggested areas.   

2.6.3 Hawaii Island 

The Hawaii Natural Energy Institute (HNEI), in conjunction with Hawaii Electric 

Light Company, currently has a project examining the performance of PV arrays within 

the different microclimates of Hawaii Island (Hawaii Natural Energy Institute 2012).  

Solar radiation and weather data is collected at one-second intervals and stored within the 

HNEI database (Larry Cutshaw, HNEI Project Manager, phone conversation 28 

December 2012).  The goal of this project is to better interpret the interconnection 

between weather conditions and PV performance.  This data is currently being analyzed 

and no report has been publicly released at this time.   

2.6.4 Statewide 

The Office of Planning, Statewide GIS Program website houses two solar spatial 

datasets for public use. The first is a monthly and annual solar resource potential 10-

kilometer grid measured in global horizontal irradiance and direct normal irradiance. This 

GIS data was developed by NREL using the Perez model from the State University of 

New York/Albany (NREL 2013).  It is worth noting that with a spatial resolution of 10 

kilometers there is little confidence in the accuracy of this dataset. The metadata 
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associated with this dataset states that modeled values are only accurate to approximately 

15 percent of a true measured value in the grid (State of Hawaii Office of Planning 2013).  

This is attributed to the terrain effects and microclimate influences including local cloud 

cover that can vary significantly over short distances (State of Hawaii Office of Planning 

2013).   

The second, and perhaps the most commonly utilized solar dataset, is the solar 

radiation polyline dataset commonly referred to as the “Solar Zone Map.” These 

polylines were digitized from 1985 Sunshine Maps of varying scales (State of Hawaii 

Office of Planning 2013).  The data displays solar zones measured in calories/cm2/day. 

Solar zones range from 200-650 calories/cm2/day. These zones were compiled based on 

old Hawaii Sugar Planters Association anemometer solar data (State of Hawaii Office of 

Planning 2013). This dataset is also served on the Department of Business Economic 

Development and Tourism web map “EnerGIS” (DBEDT 2013b).  

With only two low-resolution solar datasets currently available for Hawaii Island, 

there are limited mapping resources to help commercial and residential facilities identify 

their own solar potential. The literature and mapping applications reviewed here were 

used to inform the development of the methods for this study. The methodology 

described in the following section seeks to incorporate higher resolution data and GIS 

solar modeling tools to better quantify total photovoltaic potential for residential rooftops.  
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CHAPTER 3: METHODS  

This chapter begins with further elaboration on the study area characteristics and a 

description of the data utilized in this research. The research design is then presented and 

methods for determining the rooftop sample set, calculating incoming solar radiation and 

analyzing rooftop points are discussed in detail. The final section presents the methods 

for performing statistical analysis to generate the equations needed for extrapolation to 

estimate total PV potential for the study area.    

3.1 Description of Study Area  

The town of Kailua Kona, on the leeward side of the Big Island was chosen for 

this study (Figure 3.1). The Big Island is centered at 19.63 N, 155.52 W and measures 

8,150 Km2. The island is often described as a warm tropical environment but, in fact, 

climate on the island varies greatly over relatively short distances. The average 

temperatures on both the leeward and windward side of the island range between average 

highs from 75 to 83 F° with average lows between 57-70 F° (Western Region Climate 

Center 2012). The large volcanic mountains of Mauna Loa and Mauna Kea dominate the 

island physiography. This mountainous terrain is the largest influence on climate 

variability with windward coasts receiving over 130 inches of rain annually while the 

leeward coasts see less than 30 inches of precipitation (Western Pacific Regional Fishery 

Management Council 2012). Calculation of solar radiation and PV potential on the Big 

Island presents a unique set of challenges with the highly variable weather conditions and 

elevations creating multiple microclimates. The study area was selected to ensure the 

highest resolution data were used to assess solar radiation (Figure 3.1). The boundaries 

were defined by the availability of LiDAR data.  
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Figure 3.1 Study area LiDAR coverage 

3.2 Data 

3.2.1  LiDAR data 

Light Detection and Ranging (LiDAR) data was utilized for the creation of the 

digital surface model (DSM).  Point-cloud files were obtained from the Hawaii State 

Office of Planning, Statewide GIS Program. Data was originally collected on July 14, 

2006 by Airborne1. Data was obtained in ASCII raw format in UTM Zone 5.  

Point cloud data is a type of vector data in which spatial location is explicitly 

stored in each point (Chen 2007). A high density point cloud therefore has a much larger 

file size than imagery with the same resolution (Chen 2007). In order to allow for easier 

management of the files, the raw point files available for the study area were separated 

into 156 tiles. 
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The ASCII data obtained for this study included XYZI point files for all points, 

ground points, and extracted points. This means that all points were filtered into ground 

and non-ground returns to create the ground points and extracted points. For this study, 

the extracted points were selected to create the digital surface model (DSM). The 

extracted points contain the height information for the built environment and vegetation 

on the ground. The bare earth, or ground points, have been removed.  

The workflow for creating the DSM from the available LiDAR ASCII data was 

adapted from the workflow presented by the County of Los Angeles-Solar Mapping 

Portal (LA County 2010). Using tools in the ArcMap 3D Analyst extension, the raw 

LiDAR extracted point files were processed into terrain rasters that served as the digital 

surface models for input into the solar radiation analysis.    

The Esri point file information tool was used to generate a summary of the 

characteristics for each tile including the number of points, average point spacing, z min, 

and z max. The raw extracted point data files were processed to multipoint feature 

classes. The new feature classes were then added to a feature dataset. Terrain datasets 

were generated within these feature datasets. Average point spacing was determined from 

the point file information tool findings for each tile. The Terrain to Raster tool was used 

to produce a rasterized surface model model. This step created the surface grid from the 

terrain. Cell size was set to 2 meters after consideration of the average point spacing for 

each tile. An example of the final product is displayed in Figure 3.2. This graphic 

illustrates the surface of the land including buildings and vegetation heights.   !! 
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Figure 3.2 Elevation with 2-meter spatial resolution from LiDAR 

3.2.2 Tax Map Key Parcel Data 

The tax map key (TMK) parcel data is a polygon shapefile that was also obtained 

from the Statewide GIS Program (State of Hawaii Office of Planning 2013).  The TMK 

parcel data was originally in UTM Zone 4, North American Datum (NAD83), but was 

projected into UTM Zone 5 for proper alignment with the Hawaii digital surface data. 

The dataset was created by a local agency, Geographic Decision Systems International, 

and is maintained by Hawaii County. The last update was July 2011.   

The TMK parcel data played an integral part in this research design. This is the 

most comprehensive list of parcel characteristics available to the public containing a 

number of attributes for each lot. The most relevant to this study are displayed in Table 

3.1. The TMK number is the unique identifier for each parcel. The parcel index (PITT) 

code is the tax category applied to the property and the Homeowner attribute designates 
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the existence of a home. Attributes were sorted by PITT code to identify the residential 

parcels and then unoccupied lots were eliminated by filtering for the Homeowner 

attribute. This process identified the pool of residential lots to be considered for analysis 

of PV potential.  

It is important to note that the parcel data does not have any building square 

footage data recorded. Without any existing rooftop or building structure size data for the 

study area, the parcel area (lot size) was used to analyze against a digitized rooftop 

sample to look for correlations.   

Table 3.1 Tax map key (TMK) parcel data attributes 
Attribute Description 

TMK  Unique 9 Digit Tax Map Key Number 

PITT code  Used to identify tax rate applied to the property  
(examples include residential, commercial, and industrial) 

Homeowner Homeowner on property (Yes, No, Unknown) 
Shape Area Lot Size  
Source: State of Hawaii Office of Planning, State GIS Program 2013 

 
3.2.3 Aerial Imagery 

The Bing Maps Aerial Imagery was used as the reference for digitizing rooftops 

from building outlines. It offers worldwide orthographic aerial and satellite imagery with 

the most detailed coverage in the United States and the United Kingdom (Esri 2013b). 

Bing Maps was chosen as the basemap over the ArcGIS online World Imagery Map 

Service as it displayed at a higher resolution with less cloud cover over study area 

parcels.  

3.2.4 PV Production on Active Residential Site  

Real time PV production data was provided by a local resident. This data was 

used for a comparison with PV potential modeled in this study. The performance of this 
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residential 2 kilowatt, 12 inverter photovoltaic system is logged through the EnPhase 

Energy Products website (enlighten.enphaseenergy.com). The dashboard allows the user 

to see search the installation by location. The system size, lifetime production and 

number of microinverters are displayed. It also documents the daily, monthly, and annual 

performance of each panel installed. Historical output reports can be generated based on 

user defined time periods.  This interface was used to generate total production reports 

for 2012 and January – June 2013 for the location.   

3.3 Research Design  

Once the available data sources were identified a number of tasks were outlined in 

order to estimate total rooftop photovoltaic potential for the study area. It was first 

necessary to identify a sample of parcels for which to digitize rooftops. These sample 

rooftops and the rooftop with real time PV production were digitized. The terrain 

parameters and solar radiation were then calculated for those rooftops. These rasters were 

converted to vector points to perform a spatial join with rooftops. The average slope, 

elevation, and solar radiation were spatially joined to each rooftop so that PV potential 

could be calculated. The variables for each rooftop were used for statistical analysis of 

the relationship between rooftop and lot size, as well as multiple linear regression for 

average and total rooftop PV potential. Finally, the equations built were applied to the 

entire study area. Figure 3.3 outlines the research design and the remainder of the chapter 

discusses each step in detail.  
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Figure 3.3 Flowchart for calculating PV potential for this study 
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3.3.1 Isolating Building Rooftops for Sample Set 

   The rooftop isolation methods discussed in the literature review chapter refer to 

methods for mapping urban environments using LiDAR, 3D modeling and other higher 

resolution data sources (Jo and Otanicar 2011; Nguyen et al. 2012).  In these cases, the 

rooftop area calculation for each location is a part of an automated process. For this study 

area, automated rooftop estimation was not possible as there were no existing building 

footprint shapefiles available. It was also not possible to isolate existing tree vegetation 

from building structures when processing the LiDAR point files into the digital surface 

model. Without the option to automate building extraction, the sample set of rooftops 

needed to be hand digitized for analysis.  Due to time constraints, it was not feasible to 

analyze every rooftop in the study area so the decision was made to follow similar 

methods as those proposed by Wiginton et al. 2010 and use a sample set of rooftops to 

characterize the region. This was accomplished in the two steps described below.  

3.3.1.1 Stratified Parcel Selection 

A representative sample of rooftops was selected by analyzing the available parcel 

dataset.  The hypothesis was that available parcel area (lot size) data would display a 

correlation with the rooftop size and this relationship could be used to extrapolate out to 

the entire study area.  

The sample rooftops to digitize were chosen using stratified random parcel 

selection based on the TMK parcel area found in the attribute table. There were a total of 

15,676 parcels in the study area.  The study area was comprised of parcels of all tax 

classifications (PITT Codes Table 3.1) including residential, commercial, apartment, 

industrial, agricultural and rural, conservation, hotel and resort, unimproved residential 
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and homeowner. Parcels were first sorted for residential tax codes then filtered to identify 

those with a homeowner classification. This resulted in 4,694 parcels with single family 

dwellings located on them.  

The size distribution for the 4,694 parcels was then analyzed using JMP software.  

Outliers with areas in the smallest 0-2.5 percent and largest 97.5-100 percent were 

removed.  The result was 4,460 eligible study area parcels. The parcel area stratified 

classes are displayed in Table 3.2. There are six classes based on lot size. Table 3.2 

displays the number of parcels that fall within each class and the size range of the lots.  

Classes were created to ensure the sample chosen for digitizing was representative 

of the range of lot sizes in the study area. This was done strategically for future analysis 

of the correlation between lot size and rooftop size.  

Table 3.2 Stratified parcel selection 
Class Percentage Total Parcels Lot Size Range (m2) 

1 2.5-10% 352 536 – 688 
2 10-25% 704 688 – 766 
3 25-50% 1,174 766  – 958 
4 50-75% 1,174 958 – 1,419 
5 75-90% 704 1,419 – 1,893 
6 90-97.5% 352 1,893 – 3,026 

 
 
In order to create an appropriate sample size, the Creative Research Systems 

(2012) sample size calculator was utilized.  It was determined that a population of 4,460 

parcels a 5 percent sample size (or 223 parcels) results in a 95 percent confidence level 

and confidence interval of 6.4.  Table 3.3 displays the breakdown of the number of 

samples to digitize for the 5 percent sample size for each class. The resulting 223 parcels 

for digitizing were chosen at random using Microsoft Excel. 
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Table 3.3 Sample design for digitization 
Class Total Parcels Samples to Digitize 

1 352 17 
2 704 36 
3 1,174 59 
4 1,174 58 
5 704 36 
6 352 17 

Total 4,460 223 

 

3.3.1.2 Digitizing Rooftops  

The built in Bing Maps Aerial Imagery was chosen as the base map to digitize for 

reasons discussed in Section 3.2.3. The rooftop feature class was digitized at the highest 

resolution possible given (between 1:500 to 1:1,000). An example of digitized rooftops is 

displayed in Figure 3.4.  

Figure 3.4 Sample set of rooftops 
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3.3.2 Estimating Terrain Parameters and Incoming Solar Radiation  

  The sample set rooftops were used to determine the LiDAR tiles needed for 

analysis of terrain parameters and solar radiation. For each tile where sample set homes 

were located, the slope, aspect and solar radiation was also calculated.  

3.3.2.1 Terrain Parameters: Slope and Aspect  

The 2-meter LiDAR elevation data provided the raster surface input to run the 

slope and aspect tools in the ArcGIS toolbox. This resulted in an output aspect raster and 

an output slope raster. The aspect, or orientation, was calculated in degrees measured 

clockwise from north 0 - 359.9°. The inclination of slope was also calculated in degrees, 

from 0 - 90°. Examples of the aspect and slope are displayed in Figure 3.5 and 3.6. These 

figures display a small section of the study area with three sample rooftops.  

 
Figure 3.5 Map showing aspect 
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Figure 3.6 Map showing slope  

 
 
3.3.2.2  Estimating Solar Radiation  

Using GIS to model solar radiation provides a convenient way to generate 

insolation maps and relate them to other spatial data (Fu and Rich 1999). The Esri toolset 

was chosen as the appropriate GIS modeling tool for calculating solar radiation for this 

project.  

The main input for the tool is a digital elevation model (DEM) or digital surface 

model (DSM). In this case, the 2-meter resolution LiDAR provides the latitude for the 

site area, the slope and the aspect for each cell. The user determines a number of 

conditions for the remaining tool parameters. Table 3.4 displays the input parameters 

were selected to create the solar radiation surface for this study.  
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The sky size sets the resolution of the viewshed, sky map and sun map; which 

determines the number of calculations that take place to estimate the direct radiation 

reaching each cell in the surface grid. The default is 200 x 200 cells but increasing sky 

size increases accuracy. Multiple trials were run to balance calculation time with desired 

accuracy of results. Unfortunately, processing time increased greatly with higher 

resolution values of 400 x 400 and above. Upon further research it was determined that, 

when testing their model performance Fu and Rich (1999) found highly similar results 

from both 200 x 200 and 400 x 400 viewshed resolutions, so the decision was made to 

utilize the default values for this input parameter. The calculation direction input sets how 

many directions are used when calculating the viewshed. Thirty-two (32) is the default 

and is considered sufficient for complex mountain topography (Fu and Rich 1999). The 

azimuth and zenith divisions relate to how many divisions are used to create the sky map. 

The default, 8, was selected for each.  

The time period for which the insolation is calculated can be set to within one 

day, multiple days, specific days or across the whole year (Esri 2013a). For this case, the 

maximum range of one year was chosen. The user must then choose the day interval and 

hour interval. These variables also relate to sky size. When the sky resolution is set to the 

default it is important to have a day interval greater than 14. In this case where time 

configuration is set to one year, the day interval is disabled by the tool in order to 

calculate on monthly calendar intervals (Esri 2013a). The hour interval indicates the time 

used for calculating sky sectors of sun maps. The default of 0.5 hour was chosen.  

Finally, the user must indicate the parameters having to do with how diffuse 

radiation is calculated. Standard overcast sky was chosen for the diffuse model type. This  
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Table 3.4: Input parameters for area solar radiation tool in ArcGIS 
Input Description Value 

DEM Input elevation parameters from surface raster layers. 2 meter-LiDAR 

Latitude Latitude of site area, units are in decimal degrees. 
19.5º N 

(Automatic input 
from raster) 

Sky Size Resolution of the viewshed, sky map and sun map, upward 
looking representation of the sky. 200 

Time 
Configuration 

Specifies the time configuration period used for calculating solar 
radiation: within a day, multiple days, special days, or whole year. Whole year 2013 

Day Interval Time interval through the year (units: days) used for the 
calculation of sky sectors for the sun map. (monthly) 

Hour Interval Time interval through the year (units: hours) used for the 
calculation of sky sectors for the sun map. .5 

Each Interval Specifies whether to calculate a single total insolation value for all 
locations or multiple values for the specified hour and day interval No interval 

Z Units Number of ground x,y units in one surface z unit. 1 

Slope Aspect 
Input Type 

How slope and aspect information are derived (either from DEM 
or Flat surface). From DEM 

Calculations 
Directions 

Number of azimuth directions used when calculating the 
viewshed (multiples of 8, 32 is default). 32 

Zenith Divisions Number of divisions used to create sky sectors in the sky map, 
default is 8 divisions relative to zenith. 8 

Azimuth 
Divisions 

Number of divisions used to create sky sectors in the sky map, 
default is 8 divisions relative to north. 8 

Diffuse Model 
Type 

Type of diffuse model- uniform sky, the incoming diffuse 
radiation is same from all directions OR standard overcast sky- 
standard overcast diffuse model varies with zenith angle. 

Standard overcast 
sky 

Diffuse 
Proportion 

The proportion of global normal radiation flux that is diffuse (0-
1). 0.3 

Transmittivity 

Relates to cloud cover, fraction of radiation that passes through 
the atmosphere averaged over all wavelengths, values range from 
0-1, 0 is no transmission and 1 is all transmission, .5 for a 
generally clear sky. 

0.5 

Source: Descriptions from Esri 2013a Desktop Help  
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ensures incoming diffuse radiation is calculated for each zenith angle (Esri 2013a). The 

diffuse proportion and transmittivity have an inverse relationship. The diffuse proportion 

indicates the amount of global normal radiation is that is diffuse and the transmittivity 

indicates the amount of radiation that passes through atmosphere. The defaults were 

chosen, 0.3 and 0.5 respectively (Esri 2013a). 

Figure 3.7 displays an example of the final annual solar radiation calculated for 

2013, for the same part of the study area displayed in the slope and aspect figures.  

Incoming solar radiation in this example displays a minimum of 123.6 kWh/m2/yr and 

maximum of 1,767 kWh/m2/yr.  

 
Figure 3.7 Incoming solar radiation surface  
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3.3.3 Spatial Analysis for Selected Rooftops  

 Once the sample rooftops were identified and the elevation, slope, aspect and solar 

radiation were generated for the area, it was necessary to compile the findings so that PV 

potential on each rooftop could be calculated.   

3.3.3.1  Raster to Point  

The elevation, slope, aspect and solar radiation rasters were converted to vector 

point layers in order to prepare for spatial analysis with the rooftop polygon layer. Using 

the Raster to Point tool in the toolbox, each cell was converted to a point in an output 

feature class. Each elevation, slope, aspect and solar radiation cell value became an 

attribute in the point layer feature classes.   

Using the Clip tool, the rooftop polygon feature class was used to isolate the 

terrain and solar radiation points falling specifically on the buildings and eliminate the 

remaining areas from the point feature classes (Lietelt 2010). An example of the solar 

radiation points within rooftops is displayed in Figure 3.8.  

Figure 3.8 displays a significant variation in the range of solar insolation (340-

1,750 kWh/m2/yr) reaching the sample rooftops pictured. The higher solar radiation areas 

appear to be located on the southeast corners of both rooftops but there are some high 

insolation points scattered on the northern edge of each rooftop as well. Variance in 

rooftop insolation is not uncommon and can be attributed to a number of causes including 

building structure orientation, shading from surrounding vegetation, and drastic elevation 

changes. It is not, however, clear from the findings displayed in Figure 3.8 whether any 

of these variables are influencing factors that would cause these divergent results. This 

warrants further investigation into the characteristics of the area in order to assess the 
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quality of the solar rooftop points.  To do so, the solar radiation points (Figure 3.8) and 

aspect points (Figure 3.9) were compared to a high resolution image of the location 

obtained from Google Earth (Figure 3.10). 

 

 
Figure 3.8 Points of solar radiation on rooftop 
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Figure 3.9 Aspect points on rooftop 

 
Figure 3.10 High resolution sample rooftop image from Google Earth 
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 The use of the Google Earth image allowed the critical evaluation of the 

reliability of the rooftop point data. Overall, the comparison of all three figures highlights 

some inconsistencies that cause concern over the quality of the rooftop point solar 

radiation data. Both properties have tree landscape around their perimeters but there are 

no large tree stands or continuous vegetation areas that would significantly shade the 

portions of the rooftops from incoming sunshine. Moreover, the aspect points (Figure 

3.9) do not appear to correspond with the actual orientations of the rooftop surfaces 

(Figure 3.10). In Figure 3.10 the upper right hand sample rooftop (B) displays a complex 

rooftop with varying roof levels and directions. The lower left hand rooftop (A) seems to 

have four main orientations with some smaller skylights or objects located on the surface.  

In Figure 3.9, the majority of aspect points on both rooftops are west facing. The other 

orientations, while less represented, are scattered and do not seem to align with the 

symmetrical rooftop divisions displayed in Figure 3.10.   

3.3.3.2 Spatial Join  

While the solar insolation point data was initially considered the ideal 

representation for calculating PV potential from incoming solar radiation, the lack of 

consistency between Figure 3.8 and 3.9 and the available imagery and led to an approach 

considering average incoming solar radiation on rooftops. The spatial join tool was used 

to create a final feature class layer containing the average elevation, slope, and solar 

radiation for each rooftop. This tool joins the attributes from one feature (the join feature 

class) to another (the target feature class) based on their spatial relationships (Esri 2013c).  

Each point layer was set as the join features to the rooftop target feature class. The Join 

operation was set to JOIN_ONE_TO_ONE with the merge rule specified as Average. 

 



(A!
!

Therefore the output layer contained the 224 rooftops (223 samples and one rooftop with 

real PV production) with the average elevation, slope and incoming solar radiation. The 

attributes of the final rooftop layer are outlined in Table 3.5. The aspect point layer was 

not joined to the rooftop layer as it was not possible to average the directional degrees 

and get an accurate representation of orientation.   

Once the elevation, slope and solar radiation points were spatially joined to the 

rooftop polygon layer, the final layer was exported to Microsoft Excel for statistical 

analysis of the variables and their relationship to photovoltaic potential.  

 
Table 3.5: Final rooftop layer attribute table used for PV potential calculation  
Column Unit Description 

OBJECT ID 
 

Numeric Unique ID for each rooftop 

Join Count 
 

Numeric Total number of data points 
within shape area 

TMK Number 
 

Numeric Tax map key number for parcel 
where rooftop is located 

Average Elevation 
 

Meters Average of elevation points 
within shape area (output of 
LiDAR elevation surface) 

Average Slope Degrees Average of slope points within 
shape area (Output from slope 
raster) 

Average Incoming Solar 
Radiation 

Watt-hours per  
square meter per year 
(Wh/m2/yr) 

Output from Area Solar radiation 
tool; average of incoming solar 
radiation points within shape area 

Rooftop Area M2 Area of digitized rooftop 

Parcel Area M2 Area of parcel where rooftop is 
located 

Parcel Class Number Class used for stratified parcel 
selection 
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3.3.4  Calculating PV Potential on Building Rooftops 

     Although solar radiation is one of the largest factors in calculating photovoltaic 

generation potential, other factors like technology, orientation and maintenance play 

important roles as well. As discussed in the literature review, many web-based GIS solar 

tools use simplified formulas to assess PV potential. In most cases, calculating the PV 

potential requires a consideration of different output capacities the type of the panels or 

system in place.  Súri et al. (2005) suggest Equation 1 presented in the literature review 

for estimating PV potential. This equation was chosen for this evaluation as it 

incorporates both the peak power rating for the panel type and a system performance 

ratio. 

The peak power rating is a reflection of the efficiency of the PV technology under 

consideration. Each available model has a specific peak power rating under standard test 

conditions (STC) and PVUSA test conditions (PTC). Standard test conditions reference 

model output at 1000 W/m2 solar irradiance and 25oC PV module temperature (NREL 

2012). PVUSA test conditions are designed to be a better reflection of real world 

conditions.  

Neither STC nor PTC ratings account for system losses from converting from 

direct current to alternating current. Variables like wiring, transformers, or inverters all 

affect panel output. This is typically accounted for by a derating factor, which can also be 

referred to as the conversion coefficient or performance ratio. As mentioned in the 

literature review, Súri et al (2005) suggest a typical performance ratio for mono- or 

polycrystalline silicon panels of 0.75. Hofierka and Kanuk (2009) use a default value of 

0.766 for the power conversion efficiency coefficient for crystalline silicon. For this 
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study, a performance or derate factor of 0.77 was chosen as this is the standard utilized by 

NREL (2013) PVWATTS and commonly accepted by industry professionals in Hawaii. 

On Hawaii Island, one of the most common photovoltaic panels installed is the 

SolarWorld SW260 monocrystalline panel (Jim Garber, Inter-Island Solar Supply 

Representative, email 13 May 2013). A detailed list of manufacturer specifications and 

ratings for modules is available in the Home Power 2012 PV Model Guide.  The 

specifications for the chosen PV panel model were obtained from there.  

The average and total PV output potential for the sample set rooftops were 

calculated by applying the average incoming solar radiation determined by the Area Solar 

Radiation tool to the Súri formula. When coupled with the total rooftop area, the above 

formula provides a means to determine the total capacity (kW) and annual energy output 

(kWh) potential for the study area. These calculations were completed in Microsoft Excel 

using the exported attribute table from the final rooftop feature class layer. The data 

outlined in Table 3.6 was added to the rooftop attribute table.  

Table 3.6 PV potential calculated data for rooftop layer attribute table  
Column Unit Description 

Average Incoming Solar 
Radiation in kWh kWh/m2/yr 

1 kWh = 1,000 watts, kWh is the standard 
unit of energy, calculated by dividing Area 
Solar Radiation tool results by 1,000. 

Total Incoming Solar Radiation 
on Rooftop kWh/yr Average incoming solar radiation multiplied 

by rooftop area. 
Average PV potential per square 
meter kWh/m2/yr Calculated using the chosen equation. 

Total Rooftop PV potential kWh/yr Average PV potential multiplied by rooftop 
area. 

 

3.3.5  Statistical Analysis for Extrapolation to Study Area 

   In order to answer the research question “what is the total solar PV potential for 

residential rooftops in Kailua Kona,” it was necessary to use the data from the sample 
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set to extrapolate out to the entire study area.  To accomplish this, a number of analyses 

were performed using JMP statistical discovery software. Analysis was done by parcel 

class and for the total sample set. This work was undertaken to assess the influence of 

terrain parameters on modeled PV potential and identify the relationship between 

rooftop and lot size.  

Multivariate correlation analysis was performed to identify any simple linear 

associations between the various terrain parameters, PV potential, rooftop size and lot 

size. Simple linear regression was run to identify a linear fit equation for rooftop and lot 

size. This linear fit equation was the basis for extrapolating from the rooftop area in the 

sample set to estimate the rooftop area in the entire study area.    

Multiple linear regression analysis was performed to look at the influence of 

multiple variables together on PV potential and to build the equations for calculation of 

total PV potential for study area rooftops. This regression analysis was performed for 

both average PV potential and total PV potential. The findings from the regression 

analysis were used to look for patterns between classes and determine the influence of the 

terrain parameters.   
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CHAPTER 4: RESULTS 

The following chapter shows the results of the modeling efforts described in the 

methodology as well as a series of statistical analyses. The statistical analysis work was 

performed to identify relationships and trends in the data in order to extrapolate from the 

sample parcels to make predictions for PV potential in the entire study area. 

4.1 Distribution of Lot Sizes, Rooftop Area, Terrain Parameters, and PV Potential 

  Table 4.1 displays a summary of the attributes of the total 224 samples parcels 

(223 in the sample set and one rooftop with real PV production).  This layer was created 

by spatially joining the elevation, slope, and solar radiation point layers to the rooftop 

polygon layer. Incoming solar radiation was used to calculate PV potential based on the 

Súri et al. (2005) formula presented in Equation 1 in the literature review chapter. The 

calculation of PV potential considered the average incoming solar radiation reaching the 

total rooftop area. The layer was exported to Excel to create a pivot table summary of the 

attribute characteristics.     

  In Table 4.1 we see that average elevation is relatively consistent across all 

classes and in the total sample set. Class 6 displays a significantly higher minimum 

elevation than all other classes.  Minimum, average and maximum slope are also 

relatively consistent across classes and in the total sample set.  Finally, minimum, 

average and maximum incoming solar radiation and thusly, PV potential, are also 

consistent across classes and in the total sample set.  
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Table 4.1 Summary of sample set parcel attributes in six classes: (A)-minimum lot 
size (m2), (B)-average lot size (m2), (C)-maximum lot size (m2), (D)-minimum rooftop 
size (m2), (E)-average rooftop size (m2), (F)-maximum rooftop size (m2), (G)-
minimum elevation (m), (H)-average elevation (m), (I)-maximum elevation (m), (J)-
minimum slope (°), (K)-average slope (°),  (L)-maximum slope, (M)-minimum solar 
radiation (kWh/m2/yr), (N)-average solar radiation (kWh/m2/yr), (O)-maximum 
solar radiation (kWh/m2/yr ), (P)-average PV potential (kWh/m2/yr ), and (Q)-total 
PV potential (kWh/yr ).  

  

 On the whole, rooftops in the sample set are approximately one quarter the size of 

the lots. The total lot size area of the 224 sample parcels is 249,741 square meters and 

 Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Total 

No. of 
parcels 17 36 59 58 37 17 224 

A 554.00 691.00 774.00 958.00 1,423.00 1,896.00 554.00 

B 614.47 721.08 879.53 1,114.45 1,576.49 2,263.29 1,114.92 

C 685.00 766.00 953.00 1,417.00 1,878.00 2,951.00 2,951.00 

D 43.47 109.52 34.67 117.92 195.02 194.65 34.67 

E 179.84 227.40 250.49 293.26 324.87 363.62 273.37 

F 302.37 452.99 390.74 511.89 489.94 570.05 570.05 

G 14.15 29.09 13.21 9.63 6.56 50.36 6.56 

H 211.97 182.47 222.36 245.75 205.64 264.85 221.68 

I 495.63 525.57 490.81 474.00 526.27 483.08 526.27 

J 8.65 9.56 2.04 5.65 11.84 3.68 2.04 

K 22.34 20.91 23.48 23.38 22.85 21.76 22.72 

L 42.14 38.01 41.11 40.63 38.90 32.60 42.14 

M 1,311.25 1,298.06 1,153.50 959.26 1,059.42 1,283.31 959.26 

N 1,488.08 1,488.50 1,463.10 1456.87 1,458.92 1,479.98 1,468.06 

O 1,642.73 1,662.37 1,658.95 1,626.01 1,666.21 1,636.40 1,666.21 

P 158.12 158.17 155.47 154.81 155.03 157.26 156.00 

Q 479,093 1,297,527 2,301,597 2,630,450 1,866,895 971,135 9,546,696 
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their digitized rooftop area is 61,234 square meters. When considering rooftop size, both 

Class 1 and Class 3 show small minimum values (43.47 and 34.67 square meters).  There 

are only two of these small structures in the sample set and they were investigated 

further. It is likely that they are not in fact residences but rather garage or shed type 

buildings existing on an empty residential lot. Table 4.1 shows an interesting 

characteristic for the rooftop area values of Class 2.  The classes were stratified by lot 

size under the assumption that lot size would influence size of homes on it. While the 

average rooftop sizes fall in line with this assumption, the findings diverge when 

considering the minimum and maximum rooftop size values.  Class 2 has significantly 

larger values than Class 3, with a minimum of 109.52 and maximum of 452.99 whereas 

Class 3 has values of 34.67 and 390.74 respectively.  

4.2 Correlation Analysis  

  Multivariate correlation analysis was completed to identify the linear association 

between PV potential and each explanatory variable in order to test for any relationship 

between the variables. Correlations were assessed by class section and across all samples. 

Results are displayed in Tables 4.2 and Table 4.3. 

In Table 4.2, we can see that average PV potential per square meter is the most 

strongly correlated with average slope across all classes. This negative relationship 

indicates a lower PV rooftop solar photovoltaic potential on more steeply angled 

surfaces.  
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Table 4.2 Standard correlation showing the relationship between variables across all 
classes: (A)-average PV potential (kWh/m2), (B)-average elevation (m), (C)-average 
slope (degrees), (D)-size of rooftop (m2), and (E)-lot size (m2) 
Class  A B C D E 

Class 1 A 1.00     

N = 17 B  0.12 1.00    

 C -0.85 -0.02 1.00   

 D -0.34 0.34 0.10 1.00  

 E -0.35 0.47 0.23 0.15 1.00 

Class 2 A 1.00     

N = 36 B 0.12 1.00    

 C -0.83 0.10 1.00   

 D 0.13 -0.06 -0.26 1.00  

 E -0.17 0.26 0.35 -0.28 1.00 

Class 3 A 1.00     

N = 59 B 0.11 1.00    

 C -0.81 0.04 1.00   

 D 0.09 0.01 -0.06 1.00  

 E -0.05 -0.03 0.14 0.20 1.00 

Class 4 A 1.00     

N = 58 B 0.12 1.00    

 C -0.75 0.24 1.00   

 D -0.60 -0.04 0.04 1.00  

 E -0.07 -0.17 0.13 0.07 1.00 

Class 5 A 1.00     

N = 37 B -0.03 1.00    

 C -0.91 0.15 1.00   

 D 0.10 -0.05 -0.24 1.00  

 E -0.02 0.26 0.00 0.28 1.00 

Class 6 A 1.00     

N = 17 B -0.03 1.00    

 C -0.93 0.13 1.00   

 D -0.07 0.35 0.12 1.00  

 E -0.02 -0.24 0.15 0.29 1.00 
Bold indicates statistically significant (0.99) 
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The correlation between average PV potential with rooftop size or lot size is not 

as clear. Class 1 and Class 4 samples display the strongest statistically significant 

correlation between rooftop size and average PV potential (-0.34 and -0.60). Class 1 also 

shows a negative correlation between lot size and PV potential (-0.35) which is also 

statistically significant. Both of these correlations are negative suggesting that larger 

rooftops and lot sizes have less average PV potential per square meter. Class 2, 3, and 5 

rooftop size is positively correlated with PV potential while lot size is negatively 

correlated; however only lot size shows significance.  

Elevation appears to show a slightly positive correlation with rooftop size (0.34) 

and lot size (0.47) in Class 1, which suggests that larger lot sizes are located in higher 

elevation areas.  It is not statistically significant, however. In Class 2, average elevation 

shows a small correlation (0.26) with lot size. Class 5 shows the same correlation 

between lot size and elevation (0.26), also suggesting that larger lot sizes appear to be 

located at higher elevations but neither are statistically significant. This is not, however, 

the case for Class 6 where elevation and lot size show a statistically significant negative 

correlation. Class 6 does display a moderate correlation between rooftop size and 

elevation (0.35), although it is not significant. 

When looking at the relationship between rooftop and lot size, all classes display 

a positive relationship except Class 2 which is the only statistically significant variable.  

Class 3, 5 and 6 show a moderate correlation between rooftop and lot size (0.20, 0.28 and 

0.29, respectively) with no statistical significance. This suggests that larger lot sizes have 

larger homes. The remaining classes (1 and 4) show little correlation between these two 

variables.    
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Table 4.3 displays the correlation across all samples. We can see that average PV 

potential per square meter is strongly correlated with average slope (-0.83) with statistical 

significance, while no significant correlation is shown with elevation.  Average PV 

potential is not very correlated with rooftop area or parcel area but the relationship is 

statistically significant.  Lot size and rooftop appear to be relatively correlated (0.54) with 

statistical significance.  This warrants further investigation into the relationship between 

rooftop and lot size as this relationship will be used to estimate the total available rooftop 

space for the study area. 

Table 4.3 Standard correlation table showing the relationship between variables 
across all 224 samples.  (A): average PV potential (kWh/m2), (B): average elevation 
(m), (C): average slope (degrees), (D): size of rooftop (m2), and (E): lot size (m2). 

N = 224 A B C D E 

A 1.00     

B 0.07 1.00    

C -0.83 0.12 1.00   

D -0.03 0.08 -0.03 1.00  

E -0.04 0.07 0.03 0.54 1.00 

Bold indicates statistically significant (0.99) 

When considering the results of the above multivariate correlation analyses, one 

consistently sees a strong negative correlation between PV potential and average slope.  

The findings from the multivariate correlation for both the total samples as well as the 

correlations at each Class level show there is not much significant interaction between the 

elevation and slope variables.  Thus, we can further investigate how they influence PV 

potential without being concerned about how they may be affecting one another.   

The relationship between lot size and rooftop area is of particular interest in this 

study as total rooftop area must be estimated based on lot size data.  The correlation 



>A!
!

analysis results are inconclusive.  The total sample set shows a statistically significant 

correlation of 0.54 (Table 4.3) but when considered by class there are no consistent 

findings.  Class 2 shows a significant negative correlation of -0.28 and Class 4 does not 

display any significant correlation at 0.07.  

4.3 Rooftop and Lot Size Correlation  

In order to estimate the total residential rooftop photovoltaic potential for the 

study area it is necessary to extrapolate from the sample set results. For the sample, 224 

parcels (223 samples and one rooftop with real PV production) were chosen for rooftop 

digitizing from the total of 4,460 residential parcels in the study area. The relationship 

between rooftop and lot size was analyzed using a bivariate fit Y by X model. The 

bivariate fit model provides the intercept and coefficient for the linear fit of rooftop to 

parcel size. The results are displayed in Table 4.4. The intention was to use the findings 

in order to estimate the total rooftop area in the 4,460 residential parcels. Similar to the 

multivariate correlation discussed in Section 4.2, there is little conclusive when 

considering the samples broken down by Class.  The adjusted R2 values for Classes 1-6 

show no significant influence of lot size on rooftop area.  Once again we see a negative 

coefficient relating rooftop size and lot size for Class 2. When considering the total 

sample set, we see a more promising adjusted R2 value of 0.29.   

Table 4.4 Bivariate fit modeling the correlation between rooftop and lot size for 
each Class 1-6 and the total sample set  

 Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Total 

R2
Adj -0.04 0.05 0.02 -0.01 0.05 0.02 0.29 

Intercept 46.74 836.96 65.55 258.66 66.65 155.18 **162.14 

Coefficient 0.22 -0.85 0.21 0.03 0.16 0.09 **0.10 

**statistically significant 0.99  
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4.4 Regression Analysis 

After reviewing the results from the multivariate correlations and the simple 

linear regression, a final analysis was run to look at the influence of the multiple variables 

together and build the linear fit equation that would be used for extrapolation to the entire 

study area. Multiple linear regression was used to identify the relationship between the 

slope, elevation, rooftop area and lot size explanatory variables and their influence on the 

modeled PV potential values. This method was employed so that a stronger case could be 

made for the findings from the modeling exercise.  The results discussed here serve as the 

basis to the extrapolation to the entire study area. Both standard least squares and 

stepwise approaches were utilized.  Each method displayed the same final results. Table 

4.5 displays the results for average PV potential and Table 4.6 summarizes the results for 

total rooftop PV potential.  

Table 4.5 Average PV potential least squares regression analysis (A)-average PV 
potential (kWh/m2/yr) from ESRI model, (B)-average elevation coefficient, (C)-
average slope coefficient, (D)- rooftop area coefficient and (E)- lot size coefficient  

 **Class 1 **Class 2 **Class 3 **Class 4 **Class 5 **Class 6 **Total  

A 158.12 158.17 155.47 154.81 155.03 157.26 156.00 

R2
Adj 0.86 0.72 0.66 0.64 0.84 0.86 0.71 

Intercept **234.51 **163.92 **174.54 **177.39 **206.81 **170.54 **188.18 

B 0.03 0.01 0.01 0.03 0.01 0.01 0.01 

C **-1.09 **-1.31 **-1.37 **-1.56 **-1.88 **-1.31 **-1.44 

D *-0.08 0.03 0.01 0.01 -0.00 0.00 0.00 

E *-0.06 -0.01 0.00 -0.00 -0.02 -0.01 -0.01 

*statistically significant 0.95 
**statistically significant 0.99  

  In Table 4.5 we see that the average slope was the most statistically significant 

variable across all classes and in the total sample. Elevation also shows a significant 
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influence when considering the total sample set.  Class 1 shows some statistically 

significant influence from both rooftop area and lot size but this is not seen in any of the 

other classes nor does it appear this way for the total sample set. Overall, rooftop and lot 

size show very little influence on average PV potential per square meter in the linear fit 

equation.  

The adjusted R2 values for each class range from 0.67 in Class 3 up to 0.84 in 

Class 4.  Here we see an adjusted R2 value of 0.71 for the total sample set indicating that 

the variables included can describe approximately 71 percent of the variance in PV 

potential.  

Table 4.6 Total PV potential least squares regression analysis (A)-total PV potential 
(kWh/ yr) from ESRI model, (B)-average elevation coefficient, (C)-average slope 
coefficient, (D)-roof top area coefficient, and (E)-lot size coefficient 

 **Class 1 **Class 2 **Class 3 **Class 4 **Class 5 **Class 6 **Total  

A 479,093 1,297,526 2,301,596 2,630,449 1,866,895 971,135 9,546,696 

R2 Adj 0.99 0.99 0.98 0.97 0.97 0.99 0.98 

Intercept *11,182.44 1,981.36 3,430.38 *6,900.85 *14,942.77 999.92 **7,738.05 

B *7.65 *2.33 *3.71 *7.72 4.72 4.44 **3.83 

C **-174.06 **-269.96 **-289.47 **-456.59 **-616.61 **-462.06 **-385.18 

D *150.86 **161.14 **160.90 **154.30 **153.30 **157.73 **157.05 

E -12.80 3.65 1.41 1.77 -0.74 3.38 -0.13 

* statistically significant 0.95 
**statistically significant 0.99  
 

As one would expect in Table 4.6, rooftop area plays a significant role in total 

rooftop PV potential.  Here we see slope as the other significant variable across all 

classes and elevation once again statistically significant for the entire sample set.  The 

adjusted R2 values for total PV potential least squares regression range from a low of 0.97 

in Class 5 to 0.99 in Classes 1 and 2.  The total sample set has an adjusted R2 of 0.98. 
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4.5 Extrapolation to Study Area: Rooftop Area, Average and Total PV Potential 
  
  In order to answer the proposed research question, it was necessary to use the 

rooftop lot size bivariate fit equation built from the sample set data (Table 4.4) along with 

the regression equations created for the average and total PV potential (Tables 4.5 and 

4.6) and apply them to the data available for the entire study area parcels.  The first step 

was to estimate the total rooftop area for all residential parcels. This was done using the 

equations built from the coefficients in Table 4.4 and the results are displayed in Table 

4.7. The rooftop area for each of the 4,460 was calculated using the lot size area listed in 

the TMK parcel dataset.  The available data shows total lot area equaling 4,959,217.49 

square meters.  In Column B of Table 4.7 there are two rooftop totals listed for the study 

area. The sum of classes total is the total rooftop area as summed from the bivariate fit 

equations for each class. The second total was calculated using the bivariate fit equation 

built for the total sample set. The results from the calculations performed here estimate 

total rooftop area between 1,213,074.61 and 1,219,066.15 square meters, or 

approximately 24.5 percent of lot area. This falls in line with the sample set measured 

values discussed in Section 4.1.  

  This estimated rooftop area was then utilized for the average and total PV 

potential equations. Table 4.7 also displays the results for average and total PV potential 

for the study area. The average rooftop PV potential per square meter was calculated for 

the study area based on the linear fit equations built from the regression analysis 

displayed in Table 4.5.  Total PV potential was calculated using the equations built from 

Table 4.6. For both calculations, the average elevation and slope variables were 
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populated using the sample set average values calculated for each class (displayed in 

Table 4.1).  

Table 4.7 shows the total PV potential using the regression analysis equations. 

Here we see a range of 189.847,428 - 190,788,394 kWh (or 189.85-190.79 GWh) of 

electricity annually.   

Table 4.7 Regression analysis rooftop area, average and total PV potential: (A)- 
Total lot area from parcel data (m2), (B)-total calculated rooftop area (m2), (C)- 
average calculated PV potential (kWh/m2/yr), and (D) total PV potential (kWh/yr) 

 A B C D 

Class 1 212,453.91 62,471.29 159.11 9,234,300.24 

Class 2 509,134.07 158,830.50 158.28 25,176,164.25 

Class 3 1,023,162.68 292,103.62 155.40 45,466,573.85 

Class 4 1,319,884.01 344,389.50 154.89 53,281,471.12 

Class 5 1,103,117.98 227,609.66 155.11 35,357,562.85 

Class 6 791,464.85 127,670.03 157.13 20,031,420.68 

Total  
(sum of classes) 

Total  
(regression analysis) 

 
4,959,217.49 

 
4,959,217.49 

 
1,213,074.61 

 
1,219,066.15 

 
156.65 

 
156.10 

 
189,847,428.76 

 
190,788,394.32 

 

When considered in the context of the total energy use by Hawaii Island, this is 

approximately 17 percent of the total electricity HELCO provided to the Island in 2012. 

At the current residential electricity rate of $.43, the total of 190.79 GWh per year has a 

dollar value of value of $82,039,009.56.  This works out to be an average of 42,778 kWh 

or $18,394 per rooftop.  This potential far exceeds the average demand for an average 

household. Typical residential energy use is around 500 kWh per month or approximately 

$2,580 dollars for electricity annually (DBEDT 2013a). These findings are elaborated on 

in the discussion chapter. 
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4.6 Comparison with Real Home PV Production 

One parcel from the sample set was chosen for comparison with modeled 

findings. This parcel is in Class 5 with a total lot size of 1,673 square meters. The 

digitized rooftop area measures 340.92 square meters. This digitized rooftop area was 

compared to the rooftop area calculated by applying the bivariate fit equations built from 

Table 4.4. When using the Class 5 equation with the given lot size, the rooftop area for 

this parcel calculates out to be 340.76 square meters. This is very close to the digitized 

area. The bivariate fit equation for the total sample set calculates a rooftop area of 329.48 

square meters.        

  The modeled average PV potential generated by this study using the Esri toolset 

was analyzed against actual generation data recorded by the homeowner’s PV tracking 

system. It is important to note that the PV potential values initially calculated using the 

modeled incoming solar radiation were based on the SW260 panel chosen for this 

research and presented in the methods section. After discussing with the homeowner 

however, it was discovered that he does not have the SW260 installed, and the 

characteristics associated with the installed panel are quite different. The main thing to 

note is that the installed panel is both smaller and less powerful than the SW260 used in 

the original calculations. The estimated PV potential from the incoming solar radiation 

model was adjusted to properly reflect the installed panel’s size and power rating in order 

to accurately compare with the real time product data collected from the home. Table 4.8 

below shows how the installed panels compare with the type used for the original 

estimation. 
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Table 4.8 Solar panel information used for model versus as built on sample home 
 Originally Modeled Modified to As Built 

Panel Type Solar World SW260 Solar World SW175 

Total rated power output in W per m2 (PTC or PV 
USA conditions, unit-W) 232.30 156.60 

Panel size (m2) 1.68 1.34 

Panel output (kW/m2) 0.14 0.12 

Average Solar Radiation from Esri model 
(kWh/m2/year) 1,568.78 1,568.78 

Average PV Potential (kWh/m2/yr) 166.70 145.06 

Total Rooftop Area (m2) 340.92 340.92 

Total PV Potential (kWh/yr) 56,832.27 49,453.47 

 

The actual generation data from the site was downloaded from the Enphase Enlighten 

dashboard system with the homeowner’s permission. Production data was collected for 

all of 2012 and from January 1, 2013 to June 30, 2013.  There are a total of 12 panels on 

the rooftop but only 11 were functioning during 2012.  Calculations were adjusted to 

reflect the installed panel type and the difference in total panel area between 2012 and 

2013.  Because data for 2013 was only available through June, the total output for the six 

months was doubled to get an estimate for the entire year.  The total PV production in 

2012 and estimated total for 2013 was used to calculate the average PV production per 

square meter. This recorded average PV potential was then compared with the modeled 

average PV potential. The results are displayed in Table 4.9.    

   When we compare the recorded PV production with the model we see the 

adjusted model average PV potential significantly underestimated the actual PV 

generation per square meter. The study modeled average PV potential of 145.06 

kWh/m2/yr is 68 percent of the actual production in 2012 (212.5 kWh/m2/yr) and 69 

percent of the average estimated for 2013 (208.48 kWh/m2/yr). When taking this 
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difference into account it is important to remember that the model assumed an average 

for the entire rooftop incoming solar radiation whereas the 12 panels on the home were 

installed on the portion of the roof receiving the most sun. This discrepancy is addressed 

in more detail in the discussion chapter.  

Table 4.9 Recorded rooftop PV production data compared with adjusted model 
 Actual 2012 Actual 2013 Adjusted Model 

Logged PV Production 6 months 
January - June (kWh) 1,597.34 1,631.28  

PV Production 12 months (kWh) 3,043.27 *3,262.57  

Total PV Panel Area (m2) 14.35 *15.65  

PV Production (kWh/m2/yr) 212.15 *208.48 145.06 

*estimate based on 6 months data 
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CHAPTER 5: CONCLUSION AND DISCUSSION 

This study sought out to answer the question: What is the PV potential for residential 

rooftops in Kailua Kona?  This work provides a high level overview of photovoltaic 

energy potential in the study area and proposes a method to model two pieces of 

information that were unavailable at the time the study was implemented. These include 

high-resolution incoming solar radiation data and total rooftop area. The work highlights 

the potential for future analysis using LiDAR data to automate rooftop inventories and 

describe solar radiation point data on rooftops.  

Based on the total study area regression analysis findings presented in this 

document (Table 4.7), we see that the estimated photovoltaic electric energy generation 

potential for rooftops is approximately 190,000,000 kWh annually. This would be 

approximately 17 percent of the total electricity the utility provided to the entire Big 

Island in 2012 (DBEDT 2013a).  

While it is not possible to calculate exact installed capacity for the proposed 

energy generation, we can make an estimate based on calculated rooftop area.  For 

example, total rooftop area from the sum of each class equals 1,213,075 m2. This amount 

of space could potentially hold up to 722,068 Solar World SW260 PV panels (each panel 

is 1.68 m2).  This equates to 129,157 kW or approximately 130 MW in distributed PV 

capacity (with standard derating of 0.77).  Installations of this magnitude would be about 

36 percent of the utility’s current total generating capacity and 69 percent of the Big 

Island’s peak load (DBEDT 2013a).  

When reporting these PV potential and rooftop area estimates, it is essential to 

discuss the uncertainty inherent in these findings. Three main steps were taken to build 
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the model for extrapolation to the study area. It was first necessary to select a 

representative sample, then the linear fit between rooftop size and lot size was calculated, 

and finally multiple linear regression analysis for total PV potential was completed.  

Uncertainty was introduced at each step in the analysis and is discussed in detail in the 

next paragraphs. 

A total of 4,460 residential parcels were identified within the study area. 

Recognizing that digitizing and calculating incoming solar radiation for each rooftop was 

not feasible, a 5 percent sample set (223) was chosen to provide the basis for 

extrapolation. This sample size has a 95 percent confidence level with confidence interval 

of 6.4.  This means that we can be 95 percent confident that a sample size of 223 parcels 

(+/- 6.4) will provide accurate representation of parcels in the whole study area.  

The total rooftop area was predicted using the bivariate fit Y by X model.  The 

sample rooftop areas were fit against the lot sizes and these equations were the basis for 

extrapolation to the entire study area. This model explains about 30 percent of the 

variability in rooftop area across the study area according to adjusted R2 .  

The multiple linear regression model predicts total PV potential based on average 

elevation, average slope, rooftop area and lot size. This has a higher degree of confidence 

with an adjusted R2 of 0.98. The model therefore can describe almost all of the variation 

in PV potential in the sample rooftops. That said, this model is inextricably linked to the 

available rooftop area thus relies on the input from the less certain bivariate fit model.   

Beyond the statistical uncertainty there are also unquantified sources of 

uncertainty introduced by processing of LiDAR point data, manual digitization of 

rooftops, estimating solar radiation, and averaging of parameters for calculation of PV 
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potential.  While great care was taken to minimize errors, it is important to recognize 

potential sources of uncertainty introduced throughout the research. Additionally, there 

were a number of simplifications that were necessary to complete the analysis. These are 

described in the next section.  

5.1 Project Assumptions 

The findings presented in this document are based on a methodology that has 

simplifications about system design and overall feasibility. The regression equations 

utilized were constructed using averages for each rooftop as opposed to individual point 

data.  The research was designed as such to overcome inconclusive point data and 

produce an understanding of the overall potential magnitude of distributed rooftop PV in 

this region. The hope is that this work can inform future research projects that further 

integrate higher resolution topographic data and imagery to create viable solar insolation 

point data for individual homeowners. The major assumptions are described in detail in 

this section in order to set the stage for evaluating the methodology and describing future 

research.  

For this study it was assumed that the entire rooftop can be used for PV 

generation. Based on the extrapolated total rooftop calculations, average rooftop area for 

the 4,460 parcels in the study area is approximately 272 m2. An average rooftop of this 

size could hold approximately 161 panels per rooftop, or a 28.76 kW system (with 

standard derating of 0.77). DBEDT (2013a) estimates the current residential PV systems 

on Hawaii Island around 4.4 kW per system. The national average for residential is 4.77 

kW (IREC 2013). Thus, the average whole rooftop system proposed by this project 

would be at least six times the current average size.  
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In reality, whole roof PV installations are not feasible. The major limiting factors 

include grid saturation and high installations costs. In the systems described here, 

production capacity far outweighs typical household usage. Current residential usage is 

approximately 500 kWh per month or 6,000 kWh annually (DBEDT 2013a).  This 

study’s findings estimate the overall PV potential energy generation around 190,000,000 

kWh (190 GWh).  This would be approximately 42,600 kWh per rooftop; over seven 

times the current usage.  Based on these findings, full rooftop PV installations on the 

study area homes could provide enough energy to power over 31,000 homes annually.  

As discussed in the introduction chapter, grid interconnection is a very important 

consideration. Whenever generation is greater than what is being consumed the power 

must go somewhere. Solar electricity is not a firm source of power and therefore is only 

available during daylight hours and at varying intensity throughout the day. The fact that 

an excess of generation would be produced during a short period of time during the day 

would cause substantial interconnection issues that would need to be addressed before 

any installations of such magnitude could be considered. With high levels of distributed 

PV generation already causing saturation issues on much of the utility grid, the oversizing 

of rooftop systems is even less likely in the future.   

The research design also does not consider financial feasibility of installations of 

this size. There are high installation costs associated with the larger system sizes like 

those proposed here. If we are to take the proposed system size of 28.76 kW and look at 

overall cost of installation based on current installed costs of about $5,750 per kW, each 

household system would cost approximately $165,370 before rebates and tax credits 

(Solar Energy Industry Association 2012; DBEDT 2013a). Even with available tax 
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credits and incentives potentially reducing installed cost by over 50 percent, this would 

still be a tremendous investment. Without a system to sell power back for distribution, 

systems of this size would not make financial sense for homeowners.  

Despite these simplifications and assumptions there is some value in the methods 

developed for this study. The following sections discuss the methods in detail to identify 

the strengths and weaknesses of the work undertaken.  

5.2 Review of Methodology  

The methods were designed to overcome a lack of available data for the study 

area. The main things executed in this research include (1) modeling solar radiation, (2) 

estimating available rooftop area and (3) calculating PV from incoming solar radiation. 

The high resolution LiDAR data was a key input for the completion of this study. 

5.2.1 LiDAR Performance 

LiDAR was chosen as the main source data for the rooftop analysis performed in 

this study.  This decision was made to take advantage of the benefits of using the highest 

resolution data available. As explained by Chen (2007), LiDAR is gaining popularity in 

many urban planning and landscape ecology applications.  

The ArcGIS 3D Analyst extension was used to process the point clouds to usable 

products for the study. The LiDAR data obtained contained raw ASCII files with all 

points, ground, points and extracted points. The extracted points were chosen to create 

the 2-meter resolution digital surface model (DSM). Thus, the final surface included all 

the extracted points, meaning both the building rooftops and surrounding vegetation are 

displayed in the surface model.  
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The inclusion of both vegetation and rooftop points proved more problematic than 

originally anticipated. Because the rooftop points could not be differentiated from the 

surrounding vegetation automatically, the building rooftops had to be manually digitized 

to isolate rooftop points. This greatly increased the time needed to generate a rooftop 

sample and introduced additional human error into the sample as well. 

The DSM served as the main source data for the rooftop elevation, slope, aspect, 

and solar radiation data points. These point datasets were clipped to the rooftop sample to 

prepare for spatial joining. Figure 3.8 displays highly divergent solar insolation points 

that warranted additional review to determine the reliability of these results. Using the 

aspect points (Figure 3.9) and a high resolution image obtained from Google Earth 

(Figure 3.10), it was determined that there were some significant limitations in the point 

data as it was displayed on rooftops. In particular, the orientation (aspect) points do not 

appear to align with the as-built rooftop directions. This error could have been introduced 

during processing or digitizing, but it also could be a result of the age of the LiDAR data. 

For example, the image displayed in Figure 3.10 was captured in 2013 while the LiDAR 

points were collected in 2006. The differences in rooftop appearance and LiDAR points 

could also be attributed to modifications made to the vegetation and building structures 

during the seven years between the times when the different datasets were created.  

5.2.2 Modeling Solar Radiation 

As discussed in the previous section, great care was taken to utilize existing high 

resolution LiDAR data and build a 2-meter digital surface model as the input to calculate 

solar radiation.  Because of the high resolution of this input data, processing time for 

calculating incoming solar radiation greatly increased. Insolation calculations are 
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typically very time-consuming, especially with high-resolution topographic data. Like 

any research project, trade-offs must be made between accuracy and calculation time. 

After an initial effort to run the area solar radiation with a higher resolution values for the 

viewshed (sky size) and day interval, it was determined this resulted in significant 

calculation time that was not feasible with the computer available for processing.  To 

overcome this barrier, the default input values for the Area Solar Radiation tool were 

chosen. Although the default value for viewshed is adequate for complex topography, the 

output solar radiation surface could have benefited from optimizing input parameters for 

surfaces with man-made structures.  

5.2.3 Rooftop Area Estimation 

At the outset, this study suffered from the lack of a rooftop or building structure 

dataset. The available parcel dataset only included lot size measurements. The 

methodology was then developed to test the hypothesis that lot size was in some way 

correlated with rooftop size in the sample set with the hope that the available parcel 

dataset could be utilized to predict rooftop area for the sample set.  

The residential parcels were divided into classes by area in order to select the 

representative sample randomly. Rooftop size was digitized for all parcels in the sample 

set and the parcel with real time PV production. These rooftop sizes were then analyzed 

against the lot sizes to develop the bivariate fit equation for each class and across the 

entire sample set. The intention was to evaluate the performance of the model at each 

class level compared with the equations built for the total sample set to see if the division 

into classes showed any additional correlations that were not visible when analyzing the 

sample as a whole. Similar to the work completed by Wiginton et al. (2010), these 
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equations were used for extrapolation to the study area. The correlation between rooftop 

and lot size is displayed in Table 4.4.  

The adjusted R2 values for these correlations did not initially offer much 

confidence in the fit model built for Classes 1 to 6, respectively, thus indicating very little 

association between rooftop and lot size. The equation built for the total sample set shows 

an adjusted R2 of 0.29, offering a bit more confidence in the relationship but still only 

indicating that parcel size can explain approximately 30 percent of the variance in rooftop 

size.  

When designing this research project, the initial intention was to have at least two 

parcels for a ground truth comparison with modeled data. Unfortunately, after contacting 

multiple residents, only one homeowner with at least one year of historical data was 

willing to volunteer this information. This parcel is located in Class 5. For this chosen 

parcel, digitizing produced a feature class with rooftop size of 340.92 m2.  When the 

Class 5 bivariate fit equation is applied to the parcel size, the rooftop area calculates to be 

340.76 m2. The total sample set bivariate equation calculates this rooftop to be 329.48 m2. 

This indicates that despite the low adjusted R2, the Class 5 fit model was more effective 

at predicting the rooftop area for this particular parcel. Further assessment of the 

calculated rooftop areas for each of the 223 digitized samples would provide additional 

insight into the error associated with the fit models created by class and for the entire 

sample set.  

5.2.4 Estimating PV Potential  

This study was designed by averaging incoming solar radiation for each rooftop 

and then using that value to predict average PV potential. This means that the entire 
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rooftop, including portions that had lower incoming solar radiation, were also included in 

the analysis. The method employed here was implemented as a means to overcome 

uncertainty displayed in the specific rooftop point data (Figure 3.8, Figure 3.9).   

We see the effects of the averaging when we compare the model findings with the 

home with real PV production data. Table 4.9 shows a significant difference between the 

average PV potential (kWh/m2/yr) produced on the actual rooftop installation in 2012 and 

2013, and the average predicted by our project model. The average predicted PV 

potential from the model is 30 percent less than the average PV produced by the installed 

panels. The homeowner has installed a smaller system that is strategically located on the 

portion of the rooftop receiving the most sunlight.  Therefore the average energy 

produced is justifiably higher than our predicted average for the entire rooftop.  

That being said, the PV potential estimated for the sample set rooftops is based on 

the incoming solar radiation and the efficiency of the technology installed on the roof.  

Since it was possible to adjust the model for the specific type of panel installed on this 

rooftop, this discrepancy could also be the result of the input parameters chosen for the 

solar radiation toolset.  

5.3 Future Research 

This study was designed as a starting point to assess PV potential in an area that 

has not yet had an analysis of this sort. It is useful to have an idea of the total potential 

PV production but it does not provide an in depth analysis of the feasibility of the 

installation of this magnitude of rooftop PV. There were many simplifying assumptions 

that were made in order to move forward with this work and while we were able to 



4>!
!

answer the research question, a number of new research directions have been identified 

since performing this work.  

5.3.1 LiDAR  

The use of LiDAR point data offers a major opportunity for future research in 

both automating rooftop inventories and calculating incoming solar radiation and PV 

potential for homeowners. The results of the point data produced for rooftops in this 

study highlight some uncertainty in the LiDAR surface created (Figure 3.8, Figure 3.9).  

In the near term, future research is needed to improve the reliability of the rooftop point 

data. Specifically, efforts to isolate vegetation from rooftop points are necessary.  

Chen (2007) is a proponent for using imagery to validate filtering results from 

LiDAR. In this case, analyzing additional rooftops against available imagery could assist 

in the differentiation of trees from building structures. Even without high cost processing 

software, there are opportunities to use existing imagery to automate the creation of a 

rooftop vector layer. The Solar Model for the County of Los Angeles Solar Mapping 

Portal (2010) uses aerial imagery to derive a normalized difference vegetation index 

(NDVI) to subtract from the digital surface model to isolate buildings. The benefits for 

automating rooftop layer creation are especially relevant for the Big Island, where there is 

a lack of building structure data. The ability to create quick and low cost rooftop solar 

inventories for whole communities would help developers and future homeowners 

optimize the installation of photovoltaic technologies. 

Future photovoltaic modeling should move beyond the use of averages, using the 

technique described and implemented to get point data in this study. Averaging was a 

necessary first step but it has identified the need for more detailed areas that need be 
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explored further for the data to become more useful in a real world implementation. By 

generalizing the terrain parameters this study has done little to identify areas that would 

be more appropriate to focus on for PV. This would also allow the incorporation of aspect 

points which would add another significant variable to the overall analysis. In the face of 

major grid saturation issues, solar radiation point data would give homeowners an idea 

about viable areas for panel placement and better inform on the overall installation costs 

and therefore the return on investment.  

5.3.2 Optimizing Solar Radiation Model  

With more time, additional optimization of the solar radiation model input 

parameters would be beneficial. Multiple solar radiation surfaces should be created to test 

performance.  By optimizing the input parameters for a finer resolution viewshed one 

may see more accurate results for complex surfaces with man-made structures. Modeled 

surfaces could also be analyzed against measured incoming solar radiation collected from 

a local weather station throughout the year. Although, at the time of this research was 

conducted, only one weather station existed within in the area where LiDAR data was 

collected. 
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